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Abstract
1.	 Biological data is multivariate in essence: many traits in organisms covary with 
each other in space and time. This causes biologists to either reduce these to 
a manageable number of variables or, increasingly, to use multivariate toolkits. 
One such toolkit is based on creating a multidimensional space where the 
variables are the axes. It is then possible to measure diverse aspects of the 
distribution of some observation (e.g. species) in this space. For example, if 
studying morphology, one can create a morphospace for two groups of spe-
cies, measure the volume occupied by each of these groups and then test 
whether these two volumes are significantly different or not.

2.	 There are as many definitions of these multidimensional spaces, metrics and 
tests as there are questions that can be tackled with such methods. Many of 
these methods are implemented in specific software or r packages. However, 
the definition of the space, metric and test is often dependent on the soft-
ware/package and authors points of view or specific questions. This can un-
fortunately hamper researchers’ ability to apply different methods that best 
suits their specific questions.

3.	 Here I present the dispRity package, a flexible R package for performing 
multidimensional analysis. It allows users to define each step of the analysis 
(whether it is the space, the metric or the test) through a highly modular archi-
tecture where each definition can be passed as a function. It also provides a 
tidy interface through the dispRity object, allowing users to easily run re-
producible multivariate analysis.

4.	 The dispRity package also comes with an extend manual regularly updated 
following users’ questions or suggestions. Furthermore, the package contains 
some simulation tools (e.g to simulate complex multidimensional space or 
morphological data). Finally, it also contains a suite of utility functions to work 
with dispRity objects aimed at helping users to develop their own multidi-
mensional metrics and/or tests.
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1  | INTRODUC TION

Biological data are complex. To understand the ecology and evolu-
tion of species, we must use multiple variables that inevitably covary 

with each other through time and space. One solution to this prob-
lem is to analyse these data in a multivariate framework (e.g. Díaz 
et al., 2016; Price, Friedman, & Wainwright, 2015) Such analyses 
aim to capture the complex multidimensionality of biological data, 
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while still providing outputs that are interpretable. These multivar-
iate analyses can be used to investigate changes in morphological 
diversity through time (e.g. Close, Friedman, Lloyd, & Benson, 2015), 
competitive replacement scenarios (e.g. Brusatte, Benton, Ruta, & 
Lloyd, 2008), relationships among form and function (e.g. Díaz et al., 
2016) and even to describe the entirety of possible shapes for a 
group of organisms (e.g. Raup, 1966). The biological variables in such 
analyses are equally diverse, including morphological traits (discrete 
traits like the presence or absence of a character, e.g. Close et al., 
2015; or continuous traits such as lengths, e.g. Price et al., 2015), life 
history traits (e.g. Díaz et al., 2016), or even ecosystem properties 
(e.g. Donohue et al., 2013).

In all these analysis, each set of multivariate traits forms a multi-
dimensional space. This space is represented as a matrix where rows 
are regarded as samples or observations (e.g. specimens, field sites, 
etc.) and columns are variables or some transformation thereof (e.g. 
embedding, scaling, ordination, etc.). These multidimensional spaces 
can be defined in many ways, for example as a pairwise distance 
matrix (Lloyd, 2016 and references therein; e.g. in Close et al., 2015), 
or as outputs from an ordination, whether it being a principal com-
ponents analysis (PCA, Hotelling, 1933; e.g. in Zelditch, Swiderski, & 
Sheets, 2012), a metric scaling (PCO, PCoA, Torgerson, 1958; e.g. in 
Brusatte et al., 2008) or a non-metric scaling (MDS, NMDS, Shepard, 
1962; e.g. in Donohue et al., 2013; Liow, 2004). The name we give 
to the multidimensional space tends to vary with the kinds of traits 
used to construct it. For example, when using morphological traits, 
the space will be a morphospace, when using ecological traits it may 
be referred to as an ecospace, etc.

One can then measure how the observations are distributed 
within this space to answer related questions (e.g. “does group A oc-
cupy more space than group B?”). This requires the definition of a 
proxy for space occupancy: the disparity metric (or index; Hopkins 
& Gerber, 2017) which can be measured in a multitude of ways. For 
example, one could use a metric based on the variance or the range 
of each axis of space (Ciampaglio, Kemp, & McShea, 2001; Wills, 
2001), a distance (e.g. Euclidean) measured between observations 
(Foote, 1993, 1996), a more direct approximation of the hyper vol-
ume (Cornwell, Schwilk, & Ackerly, 2006; Donohue et al., 2013), or 
many more (e.g. Navarro, 2003).

Finally, all these different multidimensional spaces and their as-
sociated disparity metrics can be used in an equal variety of statis-
tical tests such as nonparametric multivariate analyses of variance 
(NPMANOVA, Anderson, 2001; e.g. in Brusatte et al., 2008) mul-
tidimensional permutation tests (Manly, 1997; e.g. in Díaz et al., 
2016) or even, less rigorously, by looking at the confidence interval 
overlaps between disparity measurements. In summary, there are 
many different ways to perform each step of a multidimensional 
analysis, making analyses of complexity ever more complex.

In theory, this multitude of ways to generate and define multidi-
mensional spaces, measure disparity within and analyse these met-
rics is not an issue, in fact, it allows researchers to choose both the 
most appropriate method for their question or data, or even to test 
their question using multiple methods. In practice, however, this is 

hampered by existing software implementations. Although many 
software packages exist for multidimensional analysis (e.g. Adams, 
Collyer, & Kaliontzopoulou, 2018; Adams & Otárola-Castillo, 2013; 
Bouxin, 2005; De Caceres, Oliva, Font, & Vives, 2007; Harmon, 
Weir, Brock, Glor, & Challenger, 2008; Lloyd, 2016; Navarro, 2003; 
Oksanen et al., 2007), package maintainers/software developers 
choose their preferred definition of multidimensional space and dis-
parity metric to best fit their needs (i.e. data, hypothesis, etc.) mak-
ing the implementations sometimes hard to adapt to different needs. 
For example, in the excellent and widely used geomorph package, 
morphological disparity analysis uses the morphol.disparity 
function that defines the multidimensional space as the ordination 
of the Procrustes transform of the morphometric data, the disparity 
metric as the relative sum of the diagonal of the covariance of the 
ordination scores (Procrustes variance) , and uses permutation tests 
(Adams et al., 2018; Adams & Otárola-Castillo, 2013; Zelditch et al., 
2012). This is ideal for testing volume based hypothesis (e.g. “does 
groups A and B have the same volume?”), but in other cases may 
not be appropriate in non-volume-based hypothesis (e.g. “do they 
occupy the same location?”). This can lead to inappropriate analyses 
by users confined by the existing software implementations.

The aim of the dispRity package is to avoid such problems by 
providing a flexible framework for studying multidimensional data. 
This package is based on a modular architecture where each deci-
sion in multidimensional analysis (which data, metric and test) can be 
specified by the user. It implements many commonly used disparity 
metrics, as well as providing a simple interface for users to imple-
ment their own disparity functions. The package is described here 
for the use of discrete morphological data disparity analysis but can 
be generalised to any type of multidimensional data (see the glossary 
Table 1).

2  | DESCRIPTION

In brief, the package takes a matrix object (the multidimensional 
space), calculates a disparity metric from the space and analyse the 
resulting dispRity object through hypothesis testing and visuali-
sation. Some additional functions modify the space, for example by 
dividing it by groups or through time and/or bootstrapping it (see 
Figure 2). Note that the input matrix is not restricted to an ordi-
nated matrix, but can be any kind of matrix as long as its rows repre-
sent elements (e.g. the space can be a distance matrix: Close et al., 
2015). The matrix is always considered as the final multidimensional 
space to analyse and no correction is applied to it (e.g. potential cor-
rections should be applied prior to using the dispRity package) 
(Figure 2).

2.1 | Measuring disparity

The dispRity function measures disparity from a matrix where 
the columns correspond to the dimensions and the rows correspond 
to the elements present in the space. The disparity metric is passed 
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through the metric argument and is defined by the user as one or 
more function(s) that can either transform the matrix into:

•	 Another matrix (a dimension-level 3 function—e.g. a variance– 
covariance matrix; stats::cor)

•	 A vector (a dimension-level 2 function—e.g. the variance of each 
dimension; dispRity::variances—see below)

•	 A single value (a dimension-level 1 function—e.g. the overall 
standard deviation; stats::sd)

The disparity metrics can be any R function (see Table 2 for met-
rics implemented in the package). When multiple functions are passed 
to the metric argument, they are sorted by dimension-level and ap-
plied in decreasing order to the data. For example, if the metric is de-
fined as metric = c(prod, ranges) (the hypercube volume), the 
ranges function (dimension-level 2) is first applied to data and the 
function prod is then applied to the results (prod(ranges(data))). 

One can also directly pass a function description to the metric ar-
gument (e.g. metric = function(x) mean(dist(x)̂2) for the 
average squared pairwise distance). Note that this function also al-
lows to work on only a subset of dimensions via the dimensions 
argument (e.g. if only the m first dimensions must be considered).

2.2 | Splitting the multidimensional space 
into subsets

Prior to calculating disparity, the space can be subdivided into 
subsets, typically to be compared to each other. For example, 
one may compare the disparity of a specific subset of the space 
to another or, how different subsets change sequentially (e.g. 
through time). The original space corresponds to the overall 
space (e.g. a morphospace contains all the observed morpholo-
gies). Subsets correspond to parts of the space with pooled 
characteristics.

This splitting can be done using the custom.subsets or 
chrono.subsets functions. The first function takes a matrix de-
fining the space and a list of elements defining the subsets. The sec-
ond also takes a matrix and arguments giving the age of the taxa (a 
dated phylogeny of the elements present in the morphospace—see 
below) and which subsets to create: (1) discrete time subsets (or time- 
binning) or (2) continuous time subsets (or time-slicing).

The time-binning method groups elements by specific age range. 
The time-slicing method works by using a phylogeny and looking at 
which taxa are present at any specific point in time. This method 
thus requires the nodes to be part of the space, a dated phylogeny 
(chronogram) and which model to use when slicing through branches 
rather than tips and nodes. When a slice occurs not on a tip or a 
node, six methods are available to select either the descendent or 
the ancestor's node/tip as an element for this time slice: “acctran”, 
“deltran”, “random” and “proximity” as proxy for punctuated evolu-
tion models; and “equal.split”, “gradual.split” as a proxy for gradual 
evolution. See Guillerme and Cooper (2018) for full description of 
the method. Note that there is a trade-off between precision and ac-
curacy when using the time-slicing method: a higher number of slices 
increases the precision of the disparity analysis but also decreases 
accuracy.

TABLE  1 Glossary and equivalences between this manuscript, the dispRity package and terms commonly used in palaeobiology or 
ecology.

In this manuscript In dispRity In palaeobiology In ecology

Multidimensional 
space

Matrix (n × k) Morphospace, traitspace, etc. Ecospace, function-space, etc.

Elements Rows (n) Taxa, specimen, etc. Taxa, field sites, environments, etc.

Dimensions Columns (k) Ordination scores, distances, etc. Ordination scores, distances, etc.

Subsets matrix (m × k, 
with m ≤ n)

e.g. every element in a stratum or sharing  
the same ancestor

e.g. elements living in the same environment

Disparity A dimension-level 
1 or 2 functiona

Disparity: e.g. the sum of variances (Wills, 2001),  
the average pairwise distances between taxa  
(Foote, 1994), etc.

Dissimilarity: e.g. ellipsoid volume (Donohue 
et al., 2013), convex hull volume (Cornwell 
et al., 2006), etc.

aSee Figure 1.

F IGURE  1  Illustration of the different metric dimension-levels 
in the dispRity package. In this example, each cell corresponds 
to a single value (e.g. a 8 × 7 matrix or a vector of eight elements). 
A dimension-level 3 matrix would be a metric output a matrix (e.g. 
the function stats::cor to calculate the correlation between 
each dimension), a dimension-level 2 metric would output a vector 
(i.e. a distribution, e.g. dispRity::variances which calculates 
the variance within each dimension) and a dimension-level 1 metric 
would output a single value (e.g. stats::sd which calculates the 
standard deviation of the input matrix)

MatrixMatrix

Function
Vector

Single value
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2.3 | Bootstrapping and rarefying

Disparity measurement can be influenced by sampling (Butler, 
Brusatte, Andres, & Benson, 2012). To take this source of bias into 
account, one can bootstrap the multidimensional space or/and rar-
efy the data. Additionally, if disparity is defined as a dimension-level 
1 metric, it can be useful to measure it on bootstrapped data to ob-
tain a distribution on which to perform statistical analyses.

Bootstrapping can be achieved by using the boot.matrix func-
tion which pseudo-replicates the space following two algorithms:  
(1) the “full” algorithm where the bootstrapping is entirely stochastic 
(n elements are replaced by any m elements drawn from the data); 
and (2) the “single” algorithm where n = 1 (similar to jackknife).

Similarly, rarefaction can be achieved through the same boot.
matrix function. In practice, rarefaction limits the number of ele-
ments to be drawn for each bootstrap replication: only n−x elements 
are selected at each bootstrap replicate (where x is the number of 
non-sampled elements).

2.4 | Interpreting results

The functions above all generate a dispRity object that can be 
summarised or plotted using the S3 method functions summary.

dispRity and plot.dispRity. These results can also be analysed 
using the test.dispRity function for comparing subsets or test-
ing hypotheses.

2.4.1. | Summarising and plotting

The summary.dispRity and plot.dispRity functions allow 
users to set which central tendency and which quantiles should be 
represented. The plot.dispRity function graphically represents 
the summarised results using different representations: (1) “con-
tinuous” for displaying continuous disparity curves and (2) “box”, 
“lines”, or “polygons” to display them using boxplots, confidence 
interval lines or polygons, respectively. Additional arguments spe-
cific to dispRity objects can also be used such as observed to 
display the observed disparity (i.e. non-bootstrapped) or rar-
efaction to only plot the disparity for a certain number of ele-
ments (i.e. the rarefaction level). The function can also take any 
additional graphic arguments (main, xlab, col, etc...) from base R.

2.4.2. | Testing hypotheses

The test.dispRity function allows users to test hypotheses on 
the disparity data. Similarly to the dispRity function described 

FIGURE 2 dispRity package 
workflow: rectangles represent matrices; 
ellipses represent functions; plain black 
arrows indicate input/output; dashed 
grey arrows indicate output (though 
the summary, plot, and test function 
cannot be applied if no disparity has been 
calculated)
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above, this function can take any test defined by the user or 
from other r packages. The comparison arguments indicates in 
which order (if any) the tests should be applied to the subsets:  
(1) “pairwise” for pairwise comparisons; (2)“referential” for com-
paring the first subset to all the others; (3) “sequential” for compar-
ing subsets sequentially (e.g. first against second, second against 
third, etc.); (4) “all”for comparing all the subsets simultaneously (i.e.  
disparity     ̴ subsets) or (5) any list of pairs of subsets to 
compare.

Some tests are implemented within the package such as the 
Bhattacharrya Coefficient (bhatt.coeff; Bhattacharyya, 1943; 
Guillerme & Cooper, 2016), a permutation test based on null hypothe-
sised multidimensional space following (null.test; Díaz et al. 2016; 
Manly 1997) as well as a wrapper for the vegan::adonis (Oksanen 
et al., 2007) and geiger::dtt (Harmon et al., 2008) functions (respec-
tively adonis.dispRity and dtt.dispRity). This function also al-
lows additional arguments such as rarefaction (as described above) 
or correction to adjust p-values when using multiple parametric 
tests.

3  | E X AMPLES

Multivariate analysis can be really useful for looking at multiple as-
pects of organisms’ diversity together. For example, one can also look 
the diversity of morphologies (or disparity; Foote, 1991). Using dis-
parity, it is then also possible to assess whether one ecosystem or/
and time period display more morphological variation. The follow-
ing example is based on a classical morphological disparity analysis. 
Note that more examples are available in the package manual (https://
rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.
html).

3.1 | dispRity data

The package contains a dataset that is a subset from Beck and Lee 
(2014) and includes the following:

•	 BeckLee _ mat50: an ordinated matrix for 50 mammals based on 
the distance between discrete morphological characters.

TABLE  2 Definition of the disparity metrics currently implemented in the dispRity package. k is the number of dimensions, n the 
number of elements, Γ is the Gamma distribution, λi is the eigenvalue of each dimensions, σ

2 is their variance and Centroidk is their mean, 
Ancestorn is the coordinates of the ancestor of element n, f(vk) is a function to select one value from the vector v of the dimension k (e.g. its 
maximum, minimum and mean, etc.), R is the radius of the sphere or the product of the radii of each dimensions (

∏k

i=1
Ri—for a hyper-ellipsoid).

Name Description Dim Definition Source

ancestral.dist The distance between an 
element and its ancestor

2
�∑n

i=1
(kn−Ancestorn)

2 This package

centroids The distance between each 
element and a fixed pointa of 
the space

2
�∑n

i=1
(kn−Centroidk)

2 This package

convhull.surface The surface of the convex hull 1 NA geometry::convhulln (Barber, Dobkin & 
Huhdanpaa, 1996; Habel, Grasman, 
Gramacy, Stahel, & Sterratt, 2015)

convhull.volume The volume of the convex hull 1 NA geometry::convhulln (Barber et al., 
1996; Habel et al., 2015)

diagonal The greatest Euclidean distance 1
�∑k

i=1
(max (ki)−min (ki))

2 This package

ellipse.volumeb The volume of the ellipsoid 1 πk∕2

Γ(
k

2
+1)

k∏
i=1

(λ
0.5
i
)

This package; based on Donohue et al. 
(2013)

mode.val The modal value 1 NA This package

n.ball.volume The hyper-spherical (n-ball) 
volume

1 πk∕2

Γ(
k

2
+1)

k∏
i=1

R
This package

pairwise.dist The pairwise distances between 
elements

2 NA vegan::vegdist (Oksanen et al., 2007)

radius The radius of each dimensions 2 �
∑n

i=1
ki

n
− f(vk)� This package

ranges The absolute ranges of each 
dimension

2 |max (ki)−min (ki)| This package

span.tree.length The minimal spanning tree 
length

1 ∑(branch length) vegan::spantree (Oksanen et al., 2007)

variances The variance of each dimension 2 σ2ki This package

aBy default that point is the centroid of the elements
bThis function uses a fast estimation of the eigenvalue that only works in an ordinated space based on MDS or PCO/PCoA (not PCA)

https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
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•	 BeckLee _ mat99: the same matrix BeckLee _ mat50 with the 
reconstruction of their 49 ancestors.

•	 BeckLee _ tree: a chronogram with the 50 mammal species 
present in BeckLee _ mat50 and BeckLee _ mat99.

•	 BeckLee _ ages: the first and last occurrence data for 14 
of the mammal species present in BeckLee _ mat50 and 
BeckLee _ mat99.

•	 disparity: a pre-analysed dispRity object based on the data 
above.

In this example, the space is defined as a morphospace: the ordi-
nation of the distances among discrete morphological characters for 
50 mammal species Beck & Lee, 2014). Additionally, we can define 
disparity as the sum of the variances on each dimension (Foote, 1991; 
Wills, Briggs, & Fortey, 1994) that will represent an aspect of the vol-
ume of the morphospace.

3.2 | Typical disparity among groups analysis

One typical question with such analysis would be to test 
whether two groups of species have a different disparity. For 
example, using the data described above, we can test whether 
the crown mammals are more diverse in term of morphology 
than the stem ones. In other words, whether the approximation 
of the volume within the morphospace is different in crown or 
stem mammals. These two groups can be defined using one of 
the package's utility functions, crown.stem that separate the 
crown and stem species given a phylogeny (allowing to ignore 
the nodes or not):

 

It is then possible to measure the disparity between the two 
groups as follows:

Note that this function is a wrapper function that is the equiv-
alent to:

Which allows fine tuning of the optional arguments in each 
function. The three arguments here are defined as follows: data 
= BeckLee _ mat50 is our space, group = mammal _ groups 
indicates which mammals belong to which group and metric = 

c(sum, variances) is our definition of disparity (Ciampaglio 
et al., 2001; Foote, 1991; Wills et al., 1994).

This function returns a dispRity object that summarises the 
disparity analysis:

As indicated, the dispRity object contains two customised 
subsets from a morphospace made of 50 elements for 48 dimen-
sions. The dispRity object also displays information on the num-
ber and method of the bootstrap replicates as well as the definition 
of disparity. To visualise the actual disparity values, one can use the 
summary or/and plot functions (Table 3 and Figure 3):

As we can see from the summary table (Table 3) and the plot 
(Figure 3), there seems to be a significant difference in morphospace 
volume occupied between the two groups. It is possible to test this 

TABLE  3 Summarising a dispRity object (disparity per groups). n is the number of elements per subsets, obs the observed disparity (not 
bootstrapped), bs.median is the median bootstrapped disparity (here the median of the sum of variances) and the 2.5%, 25%, 75% and 97.5% 
are the confidence intervals

Subsets n Obs bs.median 2.5% 25% 75% 97.5%

1 Crown 30 2.00 1.93 1.87 1.92 1.95 1.98

2 Stem 20 1.72 1.63 1.53 1.60 1.66 1.69

FIGURE 3 dispRity plot of disparity differences between groups

Cr Stem
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hypothesis by using, for example, a nonparametric Wilcoxon test 
(stats::wilcox.test):

As indicated by the p value, there is a significant difference in dispar-
ity between the groups. Note that by default the function only outputs 
the test's statistic, parameter (if parametric) and the p value. However, the 
raw test results can also be output using the option details = TRUE 
in the function above. Additionally, the test is here performed on the 
pooled bootstrapped pseudo-replications which can increase the type 
I error. It is possible to compare each bootstrap in a pairwise way with-
out pooling the data by using the concatenate = FALSE argument. 
The results will then be a distribution of statistics and p values. Relating 
back to our question: yes, crown mammals display a higher diversity in 
morphologies than their stem counterparts (in this example and dataset).

3.3 |  Typical disparity-through-time analysis

A subsequent question to this observation could be to test whether 
this difference is due to an overall change in disparity through time 
or not. Using the same definition of the multidimensional space and 
disparity as in the previous example, we can measure, for example, 
changes in disparity through time between the Late Cretaceous 
(100.5–66.0 million years ago—Mya), the Paleocene (66.0–56.0 Mya) 
and the Eocene (56.0–33.9 Mya). Note that stratigraphic times can be 
generated automatically, using the get.bin.ages utility function.

It is then possible to measure disparity-through-time using the 
following function:

Note that this function is a wrapper function that is the equivalent to:

The arguments data = BeckLee _ mat50 and metric = 

c(sum, variances) are the same as in the example above. 
However, in this type of analysis, we also need to have additional ar-
guments: the time = time _ bins indicates the boundaries of the 
different time bins, the tree = BeckLee _ tree argument provides 
information on the age of each element and method = "discrete" 
indicates that the data is time-binned. The resulting dispRity object 
can be summarised and plotted (Table 4 and Figure 4):

Note that many plot options specific to dispRity objects are 
available such as plotting disparity in a “continuous” fashion (infer-
ring disparity between the time bins).

Similarly to the example above, it is also possible to statistically 
test this hypothesis using, for example, multivariate permutation 
ANOVA (PERMANOVA; Anderson, 2001) through the adonis.

TABLE  4 Summarising a dispRity object (disparity through time). n is the number of elements per subsets, obs the observed disparity 
(not bootstrapped), bs.median is the median bootstrapped disparity (here the median of the sum of variances) and the 2.5%, 25%, 75% and 
97.5% are the confidence intervals

Subsets n Obs bs.median 2.5% 25% 75% 97.5%

1 100.5-66 15 1.67 1.55 1.40 1.51 1.58 1.65

2 66–56 9 1.88 1.69 1.43 1.63 1.77 1.83

3 56–33.9 13 1.96 1.83 1.62 1.77 1.86 1.90

F IGURE  4 dispRity plot of disparity-through-time. The black 
line represents the median disparity (median sum of variances), the 
dark grey and light surfaces represent respectively the 50% and 
95% confidence intervals

– – –
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dispRity function that is a wrapper of the vegan::adonis 
function (Oksanen et al., 2007) for dispRity objects: 

To answer our specific question above: yes, there is an effect of 
time on morphological disparity (an increase) in this dataset (Table 5). 
Note that in this case, the function outputs different warnings on 
the usage of such test and the eventual data not used in the test. 
Additionally, the test is not applied to the bootstrapped data and 
thus might be sensitive to outliers and sampling size.

4  | ADDITIONAL INFORMATION

4.1 | Manuals and vignette

Supplementary information concerning the package and each func-
tion can be found in R, on the project page (https://github.com/
tguillerme/dispRity) or in the online manual (https://rawgit. com/
TGuillerme/dispRity/master/inst/gitbook/_book/index.html). This 
manual contains substantially more information and detailed exam-
ples including a tutorial for a “classic” disparity analysis in palaeobiol-
ogy as well as an introduction to the use of this package in ecology 
or other disciplines.

4.2 | Data simulations

This package also contains functions for simulating random discrete 
morphological matrices (sim.morpho) or random multidimensional 
spaces (space.maker). These functions are based on a similar mod-
ular architecture as that used by the dispRity functions, allowing 
users to provide their own distribution parameters for the simula-
tions. For example, stats::rnorm can be provided as an argument 
for drawing normal characters rates with sim.morpho or normally 
distributed spaces with space.maker. The discrete morphological 
data simulations are based on protocols from Guillerme and Cooper 
(2016), O’Reilly et al. (2016) and Puttick et al. (2017). The space 
simulations are based on the methods from Díaz et al. (2016). Both 
functionalities are described in more details in the package manual.

5  | CONCLUSION

The dispRity package is based on a modular architecture allowing 
researchers to simply define both their multidimensional space and 

their disparity metric to efficiently analyse multivariate data. The 
dispRity object allows users to pipeline disparity analysis from the 
data input (the matrix) to publication standard results (tables, plots, 
hypothesis testing).

6  | PACK AGE LOC ATION

The dispRity package is available on the CRAN at https://cran.r-pro-
ject.org/web/packages/dispRity/index.html or on GitHub at https://
github.com/TGuillerme/dispRity with more associated information. All 
the versions of the package are archived on ZENODO with associated 
DOI https://zenodo.org/record/1186467#.WtfbGsi-kW8.

ACKNOWLEDG EMENTS

Many thanks to Natalie Cooper for encouraging and helping with 
the writing of this paper and the package manuals. Thanks to David 
Bapst, Martin Brazeau, Rompy Chompee, Andrew Jackson, Graeme 
Lloyd and Emma Sherratt and to Michael Collyer, Gavin Simpson and 
two other anonymous reviewers for comments on the package and 
manuscript. I acknowledge support from the European Research 
Council under the European Union's Seventh Framework Programme 
(FP/2007-2013)/ERC Grant Agreement number 311092 awarded to 
Martin Brazeau and from the Australian Research Council Discovery 
Project Grant DP170103227 awarded to Vera Weisbecker.

DATA ACCE SSIBILIT Y

The dispRity package is available on the CRAN at https://cran. 
r-project.org/web/packages/dispRity/index.html or on GitHub at 
https://github.com/TGuillerme/dispRity with more associated infor-
mation. All the versions of the package are archived on ZENODO 
with associated DOI https://zenodo.org/record/1186467#.
WtfbGsi-kW8.

R E FE R E N C E S

Adams, D. C., Collyer, M. L., & Kaliontzopoulou, A. (2018). Geomorph: 
Software for geometric morphometric analyses. R package version 
3.0.6. Retrieved from https://cran.r-project.org/package=geomorph

Adams, D. C., & Otárola-Castillo, E. (2013). geomorph: An R package 
for the collection and analysis of geometric morphometric shape 
data. Methods in Ecology and Evolution, 4, 393–399. https://doi.
org/10.1111/2041-210x.12035

TABLE  5 Raw PERMANOVA output from the adonis.dispRity function: Call: vegan::adonis(formula = dist(matrix)   ̴time, data = 
disparity2, method = "euclidean"); Permutation: free; Number of permutations: 999; Terms added sequentially (first to last). Signif.  
codes: 0 ‘***’

df Sum Sq Mean Sq F model R2 Pr( >F)

Time 2 7.50 3.75 2.06 0.11  <0.01***

Residuals 34 61.82 1.81 0.89

Total 36 69.32 1.00

https://github.com/tguillerme/dispRity
https://github.com/tguillerme/dispRity
https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
https://cran.r-project.org/web/packages/dispRity/index.html
https://cran.r-project.org/web/packages/dispRity/index.html
https://github.com/TGuillerme/dispRity
https://github.com/TGuillerme/dispRity
https://zenodo.org/record/1186467#.WtfbGsi-kW8
https://cran.r-project.org/web/packages/dispRity/index.html
https://cran.r-project.org/web/packages/dispRity/index.html
https://github.com/TGuillerme/dispRity
https://zenodo.org/record/1186467#.WtfbGsi-kW8
https://zenodo.org/record/1186467#.WtfbGsi-kW8
https://cran.r-project.org/package=geomorph


     |  9Methods in Ecology and Evolu
onGUILLERME

Anderson, M. J. 2001. A new method for non-parametric multivariate 
analysis of variance. Austral Ecology, 26, 32–46. https://doi.org/10.11
11/j.1442-9993.2001.01070.pp.x

Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algo-
rithm for convex hulls. ACM Transactions on Mathematical Software 
(TOMS), 22, 469–483. https://doi.org/10.1145/235815.235821

Beck, R. M., & Lee, M. S. (2014). Ancient dates or accelerated rates? 
Morphological clocks and the antiquity of placental mammals. 
Proceedings of the Royal Society B: Biological Sciences, 281, 1–10. 
https://doi.org/10.1098/rspb.2014.1278

Bhattacharyya, A. (1943). On a measure of divergence between two sta-
tistical populations defined by their probability distributions. Bulletin 
of the Calcutta Mathematical Society, 35, 99–109.

Bouxin, G. (2005). Ginkgo, a multivariate analysis package. Journal 
of Vegetation Science, 16, 355–359. https://doi.org/10.1111/j. 
1654-1103.2005.tb02374.x

Brusatte, S. L., Benton, M. J., Ruta, M., & Lloyd, G. T. (2008). Superiority, com-
petition, and opportunism in the evolutionary radiation of dinosaurs. 
Science 321, 1485–1488. https://doi.org/10.1126/science.1161833

Butler, R. J., Brusatte, S. L., Andres, B., & Benson, R. B. J. (2012). 
How do geological sampling biases affect studies of morpholog-
ical evolution in deep time? A case study of pterosaur (Reptilia: 
Archosauria) disparity. Evolution 66, 147–162. https://doi.
org/10.1111/j.1558-5646.2011.01415.x

Ciampaglio, C. N., Kemp, M., & McShea, D. W. (2001). Detecting changes in 
morphospace occupation patterns in the fossil record: Characterization 
and analysis of measures of disparity. Paleobiology, 71, 695–715. https://
doi.org/10.1666/0094-8373(2001)027<0695:dcimop>2.0.co;2

Close, R., Friedman, M., Lloyd, G., & Benson, R. (2015). Evidence for a 
mid-Jurassic adaptive radiation in mammals. Current Biology, 25, 
2137–2142. https://doi.org/10.1016/j.cub.2015.06.047

Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait-based test 
for habitat filtering: Convex hull volume. Ecology, 87, 1465–1471. 
https://doi.org/10.1890/0012-9658(2006)87[1465:attfhf ]2. 
0.co;2

De Caceres, M., Oliva F., Font, X., & Vives, S. (2007). Ginkgo, a program for 
non-standard multivariate fuzzy analysis. Advances in Fuzzy Sets and 
Systems, 2, 41–56. https://doi.org/10.1111/j.1654-1103.2005.tb02374.x

Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., … 
Gorné, L. D..  (2016). The global spectrum of plant form and function. 
Nature, 529, 167–171. https://doi.org/10.1038/nature16489

Donohue, I., Petchey, O. L., Montoya, J. M., Jackson, A. L., McNally, L., … 
Emmerson, M. C. (2013). On the dimensionality of ecological stabil-
ity. Ecology Letters, 16, 421–429.

Foote, M. (1991). Morphological and taxonomic diversity in clade's his-
tory: The blastoid record and stochastic simulations. Contributions 
from the Museum of Paleontology, University of Michigan. Vol. 28, 
pp. 101–140.

Foote, M. (1993). Contributions of individual taxa to overall morpholog-
ical disparity. Paleobiology, 19, 403–419. https://doi.org/10.1017/
s0094837300014056

Foote, M. (1994). Morphological disparity in Ordovician–Devonian 
Crinoids and the early saturation of morphological space. Paleobiology, 
20, 320–344. https://doi.org/10.1017/s009483730001280x

Foote, M. (1996). Ecological controls on the evolutionary recovery 
of post-Paleozoic Crinoids. Science, 274, 1492–1495. https://doi.
org/10.1126/science.274.5292.1492

Guillerme, T., & Cooper, N. (2016). Effects of missing data on topological 
inference using a Total Evidence approach. Molecular Phylogenetics 
and Evolution, 94 (Part A), 146–158. https://doi.org/10.1016/j.
ympev.2015.08.023

Guillerme, T., & Cooper, N. (2018). Time for a rethink: Time sub-sampling 
methods in disparity-through-time analyses. Palaeontology. https://
doi.org/10.1111/pala.12364

Habel, K., Grasman, R., Gramacy, R. B., Stahel, A., & Sterratt, D. C. 
(2015). geometry: Mesh Generation and Surface Tesselation. R 
package version 0.3-6. Retrieved from https://CRAN.R-project.org/
package=geometry

Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). 
Geiger: Investigating evolutionary radiations. Bioinformatics, 24, 
129–131. https://doi.org/10.1093/bioinformatics/btm538

Hopkins, M. J., & Gerber, S. (2017). Morphological disparity. Cham, 
Switzerland: Springer International Publishing.

Hotelling, H. (1933). Analysis of a complex of statistical variables into 
principal components. Journal of Educational Psychology, 24, 417. 
https://doi.org/10.1037/h0070888

Liow, L. H. (2004). A test of Simpson's “rule of the survival of the rel-
atively unspecialized” using fossil crinoids. The American Naturalist, 
164, 431–443. https://doi.org/10.1086/423673

Lloyd, G. T. (2016). Estimating morphological diversity and tempo with 
discrete character-taxon matrices: Implementation, challenges, prog-
ress, and future directions. Biological Journal of the Linnean Society 
118, 131–151. https://doi.org/10.1111/bij.12746

Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods 
in biology. London, UK: Chapman and Hall.

Navarro, N. (2003). MDA: A matlab-based program for morphospace-dis-
parity analysis. Computers & Geosciences, 29, 655–664. https://doi.
org/10.1016/s0098-3004(03)00043-8

Oksanen, J., Kindt, R., Legendre, P., OâĂZ´Hara, B., Stevens, M. H. 
H., Oksanen, M. J., & Suggests, M. (2007). The vegan package. 
Community Ecology Package, 10, 631–637.

O’Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, 
J., … Donoghue, P. C. J. (2016). Bayesian methods outperform parsi-
mony but at the expense of precision in the estimation of phylogeny 
from discrete morphological data. Biology Letters, 12, pii: 20160081. 
https://doi.org/10.1098/rsbl.2016.0081

Price, S., Friedman, S., & Wainwright, P. (2015). How predation shaped 
fish: The impact of fin spines on body form evolution across tele-
osts. Proceedings of the Royal Society B, 282, 20151428. https://doi.
org/10.1098/rspb.2015.1428

Puttick, M. N., O’Reilly, J. E., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, 
L., … Donoghue, P. C. (2017). Uncertain-tree: Discriminating among 
competing approaches to the phylogenetic analysis of phenotype 
data. Proceedings of the Royal Society B, 284, pii: 20162290. https://
doi.org/10.1098/rspb.2016.2290

Raup, D. M. (1966). Geometric analysis of shell coiling: General problems. 
Journal of Paleontology, 40, 1178–1190.

Shepard, R. N. (1962). The analysis of proximities: multidimensional scal-
ing with an unknown distance function. Psychometrika, 27, 125–140. 
https://doi.org/10.1007/bf02289621

Torgerson, W. S. (1958). Theory and methods of scaling. Oxford, UK: 
Wiley.

Wills, M. (2001). Morphological disparity: A primer. In J. M. Adrain, G. D. 
Edgecombe, & B. S. Lieberman (Eds.),  Fossils, phylogeny, and form: An 
analytical approach. Boston, MA: Springer US.

Wills, M. A., Briggs, D. E. G., & Fortey, R. A. (1994). Disparity as an 
evolutionary index: A comparison of Cambrian and recent ar-
thropods. Paleobiology, 20, 93–130. https://doi.org/10.1017/
s009483730001263x

Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric mor-
phometrics for biologists: A primer. Waltham, MA: Academic Press.

How to cite this article: Guillerme T. dispRity: A modular R 
package for measuring disparity. Methods Ecol Evol. 
2018;00:1–9. https://doi.org/10.1111/2041-210X.13022

https://CRAN.R-project.org/package=geometry
https://CRAN.R-project.org/package=geometry
https://doi.org/10.1111/2041-210X.13022

