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Abstract
1.	 Biological	data	is	multivariate	in	essence:	many	traits	in	organisms	covary	with	
each	other	in	space	and	time.	This	causes	biologists	to	either	reduce	these	to	
a	manageable	number	of	variables	or,	increasingly,	to	use	multivariate	toolkits.	
One	 such	 toolkit	 is	 based	 on	 creating	 a	 multidimensional	 space	 where	 the	
variables	are	 the	axes.	 It	 is	 then	possible	 to	measure	diverse	aspects	of	 the	
distribution	of	 some	observation	 (e.g.	 species)	 in	 this	 space.	For	example,	 if	
studying	morphology,	one	can	create	a	morphospace	for	two	groups	of	spe-
cies,	 measure	 the	 volume	 occupied	 by	 each	 of	 these	 groups	 and	 then	 test	
whether	these	two	volumes	are	significantly	different	or	not.

2.	 There	are	as	many	definitions	of	these	multidimensional	spaces,	metrics	and	
tests	as	there	are	questions	that	can	be	tackled	with	such	methods.	Many	of	
these	methods	are	implemented	in	specific	software	or	r	packages.	However,	
the	definition	of	 the	space,	metric	and	 test	 is	often	dependent	on	 the	soft-
ware/package	and	authors	points	of	view	or	specific	questions.	This	can	un-
fortunately	hamper	researchers’	ability	to	apply	different	methods	that	best	
suits	their	specific	questions.

3.	 Here	 I	 present	 the	dispRity	 package,	 a	 flexible	R	 package	 for	 performing	
multidimensional	analysis.	 It	allows	users	to	define	each	step	of	the	analysis	
(whether	it	is	the	space,	the	metric	or	the	test)	through	a	highly	modular	archi-
tecture	where	each	definition	can	be	passed	as	a	function.	It	also	provides	a	
tidy	interface	through	the	dispRity	object,	allowing	users	to	easily	run	re-
producible	multivariate	analysis.

4.	 The		dispRity	package	also	comes	with	an	extend	manual	regularly	updated	
following	users’	questions	or	suggestions.	Furthermore,	the	package	contains	
some	 simulation	 tools	 (e.g	 to	 simulate	 complex	 multidimensional	 space	 or	
morphological	data).	Finally,	it	also	contains	a	suite	of	utility	functions	to	work	
with	dispRity	objects	aimed	at	helping	users	to	develop	their	own	multidi-
mensional	metrics	and/or	tests.
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1  | INTRODUC TION

Biological	data	are	complex.	To	understand	the	ecology	and	evolu-
tion	of	species,	we	must	use	multiple	variables	that	inevitably	covary	

with	each	other	through	time	and	space.	One	solution	to	this	prob-
lem	 is	 to	analyse	these	data	 in	a	multivariate	framework	 (e.g.	Díaz	
et	al.,	 2016;	 Price,	 Friedman,	 &	Wainwright,	 2015)	 Such	 analyses	
aim	to	capture	 the	complex	multidimensionality	of	biological	data,	
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while	still	providing	outputs	that	are	interpretable.	These	multivar-
iate	analyses	 can	be	used	 to	 investigate	 changes	 in	morphological	
diversity	through	time	(e.g.	Close,	Friedman,	Lloyd,	&	Benson,	2015),	
competitive	 replacement	 scenarios	 (e.g.	Brusatte,	Benton,	Ruta,	&	
Lloyd,	2008),	relationships	among	form	and	function	(e.g.	Díaz	et	al.,	
2016)	 and	 even	 to	 describe	 the	 entirety	 of	 possible	 shapes	 for	 a	
group	of	organisms	(e.g.	Raup,	1966).	The	biological	variables	in	such	
analyses	are	equally	diverse,	including	morphological	traits	(discrete	
traits	 like	 the	presence	or	absence	of	a	character,	e.g.	Close	et	al.,	
2015;	or	continuous	traits	such	as	lengths,	e.g.	Price	et	al.,	2015),	life	
history	 traits	 (e.g.	Díaz	et	al.,	2016),	or	even	ecosystem	properties	
(e.g.	Donohue	et	al.,	2013).

In	all	these	analysis,	each	set	of	multivariate	traits	forms	a	multi-
dimensional	space.	This	space	is	represented	as	a	matrix	where	rows	
are	regarded	as	samples	or	observations	(e.g.	specimens,	field	sites,	
etc.)	and	columns	are	variables	or	some	transformation	thereof	(e.g.	
embedding,	scaling,	ordination,	etc.).	These	multidimensional	spaces	
can	 be	 defined	 in	many	ways,	 for	 example	 as	 a	 pairwise	 distance	
matrix	(Lloyd,	2016	and	references	therein;	e.g.	in	Close	et	al.,	2015),	
or	as	outputs	from	an	ordination,	whether	it	being	a	principal	com-
ponents	analysis	(PCA,	Hotelling,	1933;	e.g.	in	Zelditch,	Swiderski,	&	
Sheets,	2012),	a	metric	scaling	(PCO,	PCoA,	Torgerson,	1958;	e.g.	in	
Brusatte	et	al.,	2008)	or	a	non-metric	scaling	(MDS,	NMDS,	Shepard,	
1962;	e.g.	 in	Donohue	et	al.,	2013;	Liow,	2004).	The	name	we	give	
to	the	multidimensional	space	tends	to	vary	with	the	kinds	of	traits	
used	to	construct	it.	For	example,	when	using	morphological	traits,	
the	space	will	be	a	morphospace,	when	using	ecological	traits	it	may	
be	referred	to	as	an	ecospace,	etc.

One	 can	 then	 measure	 how	 the	 observations	 are	 distributed	
within	this	space	to	answer	related	questions	(e.g.	“does	group	A	oc-
cupy	more	space	than	group	B?”).	This	requires	the	definition	of	a	
proxy	for	space	occupancy:	the	disparity	metric	(or	index;	Hopkins	
&	Gerber,	2017)	which	can	be	measured	in	a	multitude	of	ways.	For	
example,	one	could	use	a	metric	based	on	the	variance	or	the	range	
of	 each	 axis	 of	 space	 (Ciampaglio,	 Kemp,	 &	McShea,	 2001;	Wills,	
2001),	 a	distance	 (e.g.	Euclidean)	measured	between	observations	
(Foote,	1993,	1996),	a	more	direct	approximation	of	the	hyper	vol-
ume	(Cornwell,	Schwilk,	&	Ackerly,	2006;	Donohue	et	al.,	2013),	or	
many	more	(e.g.	Navarro,	2003).

Finally,	all	these	different	multidimensional	spaces	and	their	as-
sociated	disparity	metrics	can	be	used	in	an	equal	variety	of	statis-
tical	tests	such	as	nonparametric	multivariate	analyses	of	variance	
(NPMANOVA,	Anderson,	2001;	e.g.	in	Brusatte	et	al.,	2008)	mul-
tidimensional	 permutation	 tests	 (Manly,	 1997;	 e.g.	 in	Díaz	 et	al.,	
2016)	or	even,	less	rigorously,	by	looking	at	the	confidence	interval	
overlaps	between	disparity	measurements.	In	summary,	there	are	
many	different	ways	to	perform	each	step	of	a	multidimensional	
analysis,	making	analyses	of	complexity	ever	more	complex.

In	theory,	this	multitude	of	ways	to	generate	and	define	multidi-
mensional	spaces,	measure	disparity	within	and	analyse	these	met-
rics	is	not	an	issue,	in	fact,	it	allows	researchers	to	choose	both	the	
most	appropriate	method	for	their	question	or	data,	or	even	to	test	
their	question	using	multiple	methods.	In	practice,	however,	this	is	

hampered	 by	 existing	 software	 implementations.	 Although	 many	
software	packages	exist	for	multidimensional	analysis	(e.g.	Adams,	
Collyer,	&	Kaliontzopoulou,	2018;	Adams	&	Otárola-Castillo,	2013;	
Bouxin,	 2005;	 De	 Caceres,	 Oliva,	 Font,	 &	 Vives,	 2007;	 Harmon,	
Weir,	Brock,	Glor,	&	Challenger,	2008;	Lloyd,	2016;	Navarro,	2003;	
Oksanen	 et	al.,	 2007),	 package	 maintainers/software	 developers	
choose	their	preferred	definition	of	multidimensional	space	and	dis-
parity	metric	to	best	fit	their	needs	(i.e.	data,	hypothesis,	etc.)	mak-
ing	the	implementations	sometimes	hard	to	adapt	to	different	needs.	
For	example,	in	the	excellent	and	widely	used	geomorph	package,	
morphological	 disparity	 analysis	 uses	 the	 morphol.disparity 
function	that	defines	the	multidimensional	space	as	the	ordination	
of	the	Procrustes	transform	of	the	morphometric	data,	the	disparity	
metric	as	the	relative	sum	of	the	diagonal	of	the	covariance	of	the	
ordination	scores	(Procrustes	variance)	,	and	uses	permutation	tests	
(Adams	et	al.,	2018;	Adams	&	Otárola-Castillo,	2013;	Zelditch	et	al.,	
2012).	This	is	ideal	for	testing	volume	based	hypothesis	(e.g.	“does	
groups	A	and	B	have	 the	 same	volume?”),	 but	 in	other	 cases	may	
not	be	appropriate	 in	non-volume-based	hypothesis	 (e.g.	 “do	 they	
occupy	the	same	location?”).	This	can	lead	to	inappropriate	analyses	
by	users	confined	by	the	existing	software	implementations.

The	aim	of	the	dispRity	package	is	to	avoid	such	problems	by	
providing	a	flexible	framework	for	studying	multidimensional	data.	
This	package	 is	based	on	a	modular	architecture	where	each	deci-
sion	in	multidimensional	analysis	(which	data,	metric	and	test)	can	be	
specified	by	the	user.	It	implements	many	commonly	used	disparity	
metrics,	as	well	as	providing	a	simple	 interface	 for	users	 to	 imple-
ment	their	own	disparity	functions.	The	package	 is	described	here	
for	the	use	of	discrete	morphological	data	disparity	analysis	but	can	
be	generalised	to	any	type	of	multidimensional	data	(see	the	glossary	
Table	1).

2  | DESCRIPTION

In	brief,	 the	package	takes	a	matrix	object	 (the	multidimensional	
space),	calculates	a	disparity	metric	from	the	space	and	analyse	the	
resulting	dispRity	object	through	hypothesis	testing	and	visuali-
sation.	Some	additional	functions	modify	the	space,	for	example	by	
dividing	 it	by	groups	or	 through	time	and/or	bootstrapping	 it	 (see	
Figure	 2).	Note	 that	 the	 input	matrix	 is	 not	 restricted	 to	 an	 ordi-
nated	matrix,	but	can	be	any	kind	of	matrix	as	long	as	its	rows	repre-
sent	elements	(e.g.	the	space	can	be	a	distance	matrix:	Close	et	al.,	
2015).	The	matrix	is	always	considered	as	the	final	multidimensional	
space	to	analyse	and	no	correction	is	applied	to	it	(e.g.	potential	cor-
rections	 should	be	 applied	prior	 to	 using	 the	dispRity	 package)	
(Figure	2).

2.1 | Measuring disparity

The	dispRity	 function	measures	disparity	from	a	matrix	where	
the	columns	correspond	to	the	dimensions	and	the	rows	correspond	
to	the	elements	present	in	the	space.	The	disparity	metric	is	passed	
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through	the	metric	argument	and	is	defined	by	the	user	as	one	or	
more	function(s)	that	can	either	transform	the	matrix	into:

•	 Another	 matrix	 (a	 dimension-level	 3	 function—e.g.	 a	 variance– 
covariance	matrix;	stats::cor)

•	 A	vector	(a	dimension-level	2	function—e.g.	the	variance	of	each	
dimension;	dispRity::variances—see	below)

•	 A	 single	 value	 (a	 dimension-level	 1	 function—e.g.	 the	 overall	
	standard	deviation;	stats::sd)

The	disparity	metrics	can	be	any	R	function	(see	Table	2	for	met-
rics	implemented	in	the	package).	When	multiple	functions	are	passed	
to	the	metric	argument,	they	are	sorted	by	dimension-level	and	ap-
plied	in	decreasing	order	to	the	data.	For	example,	if	the	metric	is	de-
fined	as	metric = c(prod, ranges)	(the	hypercube	volume),	the	
ranges	function	(dimension-level	2)	is	first	applied	to	data	and	the	
function	prod	is	then	applied	to	the	results	(prod(ranges(data))).	

One	can	also	directly	pass	a	function	description	to	the	metric ar-
gument	(e.g.	metric = function(x) mean(dist(x)̂2)	for	the	
average	squared	pairwise	distance).	Note	that	this	function	also	al-
lows	to	work	on	only	a	subset	of	dimensions	via	the	dimensions 
argument	(e.g.	if	only	the	m	first	dimensions	must	be	considered).

2.2 | Splitting the multidimensional space 
into subsets

Prior	 to	calculating	disparity,	 the	 space	can	be	 subdivided	 into	
subsets,	 typically	 to	 be	 compared	 to	 each	 other.	 For	 example,	
one	may	compare	the	disparity	of	a	specific	subset	of	the	space	
to	 another	 or,	 how	 different	 subsets	 change	 sequentially	 (e.g.	
through	 time).	 The	 original	 space	 corresponds	 to	 the	 overall	
space	(e.g.	a	morphospace	contains	all	the	observed	morpholo-
gies).	 Subsets	 correspond	 to	 parts	 of	 the	 space	 with	 pooled	
characteristics.

This	 splitting	 can	 be	 done	 using	 the	 custom.subsets or 
chrono.subsets	functions.	The	first	function	takes	a	matrix	de-
fining	the	space	and	a	list	of	elements	defining	the	subsets.	The	sec-
ond	also	takes	a	matrix	and	arguments	giving	the	age	of	the	taxa	(a	
dated	phylogeny	of	the	elements	present	in	the	morphospace—see	
below)	and	which	subsets	to	create:	(1)	discrete	time	subsets	(or	time- 
binning)	or	(2)	continuous	time	subsets	(or	time-slicing).

The	time-binning	method	groups	elements	by	specific	age	range.	
The	time-slicing	method	works	by	using	a	phylogeny	and	looking	at	
which	 taxa	 are	 present	 at	 any	 specific	 point	 in	 time.	 This	method	
thus	requires	the	nodes	to	be	part	of	the	space,	a	dated	phylogeny	
(chronogram)	and	which	model	to	use	when	slicing	through	branches	
rather	 than	 tips	 and	nodes.	When	a	 slice	occurs	not	on	 a	 tip	or	 a	
node,	six	methods	are	available	to	select	either	the	descendent	or	
the	ancestor's	node/tip	as	an	element	for	this	time	slice:	“acctran”,	
“deltran”,	“random”	and	“proximity”	as	proxy	for	punctuated	evolu-
tion	models;	and	“equal.split”,	“gradual.split”	as	a	proxy	for	gradual	
evolution.	See	Guillerme	and	Cooper	 (2018)	 for	 full	description	of	
the	method.	Note	that	there	is	a	trade-off	between	precision	and	ac-
curacy	when	using	the	time-slicing	method:	a	higher	number	of	slices	
increases	the	precision	of	the	disparity	analysis	but	also		decreases	
accuracy.

TABLE  1 Glossary	and	equivalences	between	this	manuscript,	the	dispRity	package	and	terms	commonly	used	in	palaeobiology	or	
ecology.

In this manuscript In dispRity In palaeobiology In ecology

Multidimensional	
space

Matrix	(n × k) Morphospace,	traitspace,	etc. Ecospace,	function-space,	etc.

Elements Rows	(n) Taxa,	specimen,	etc. Taxa,	field	sites,	environments,	etc.

Dimensions Columns	(k) Ordination	scores,	distances,	etc. Ordination	scores,	distances,	etc.

Subsets matrix	(m × k,	
with	m	≤	n)

e.g.	every	element	in	a	stratum	or	sharing	 
the	same	ancestor

e.g.	elements	living	in	the	same	environment

Disparity A	dimension-level	
1	or	2	functiona

Disparity:	e.g.	the	sum	of	variances	(Wills,	2001),	 
the	average	pairwise	distances	between	taxa	 
(Foote,	1994),	etc.

Dissimilarity:	e.g.	ellipsoid	volume	(Donohue	
et	al.,	2013),	convex	hull	volume	(Cornwell	
et	al.,	2006),	etc.

aSee	Figure	1.

F IGURE  1  Illustration	of	the	different	metric	dimension-levels	
in	the	dispRity	package.	In	this	example,	each	cell	corresponds	
to	a	single	value	(e.g.	a	8	×	7	matrix	or	a	vector	of	eight	elements).	
A	dimension-level	3	matrix	would	be	a	metric	output	a	matrix	(e.g.	
the	function	stats::cor	to	calculate	the	correlation	between	
each	dimension),	a	dimension-level	2	metric	would	output	a	vector	
(i.e.	a	distribution,	e.g.	dispRity::variances	which	calculates	
the	variance	within	each	dimension)	and	a	dimension-level	1	metric	
would	output	a	single	value	(e.g.	stats::sd	which	calculates	the	
standard	deviation	of	the	input	matrix)

MatrixMatrix

Function
Vector

Single value
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2.3 | Bootstrapping and rarefying

Disparity	 measurement	 can	 be	 influenced	 by	 sampling	 (Butler,	
Brusatte,	Andres,	&	Benson,	2012).	To	take	this	source	of	bias	into	
account,	one	can	bootstrap	the	multidimensional	space	or/and	rar-
efy	the	data.	Additionally,	if	disparity	is	defined	as	a	dimension-level	
1	metric,	it	can	be	useful	to	measure	it	on	bootstrapped	data	to	ob-
tain	a	distribution	on	which	to	perform	statistical	analyses.

Bootstrapping	can	be	achieved	by	using	the	boot.matrix	func-
tion	 which	 pseudo-replicates	 the	 space	 following	 two	 algorithms:	 
(1)	the	“full”	algorithm	where	the	bootstrapping	is	entirely	stochastic	
(n	elements	are	replaced	by	any	m	elements	drawn	from	the	data);	
and	(2)	the	“single”	algorithm	where	n	=	1	(similar	to	jackknife).

Similarly,	rarefaction	can	be	achieved	through	the	same	boot.
matrix	function.	In	practice,	rarefaction	limits	the	number	of	ele-
ments	to	be	drawn	for	each	bootstrap	replication:	only	n−x	elements	
are	selected	at	each	bootstrap	replicate	(where	x	 is	the	number	of	
non-sampled	elements).

2.4 | Interpreting results

The	 functions	 above	 all	 generate	 a	dispRity	 object	 that	 can	 be	
summarised	or	 plotted	using	 the	S3	method	 functions	summary.

dispRity and plot.dispRity.	These	results	can	also	be	analysed	
using	the	test.dispRity	function	for	comparing	subsets	or	test-
ing	hypotheses.

2.4.1. | Summarising and plotting

The	 summary.dispRity and plot.dispRity	 functions	 allow	
users	to	set	which	central	tendency	and	which	quantiles	should	be	
represented.	The	plot.dispRity	function	graphically	represents	
the	 summarised	 results	 using	different	 representations:	 (1)	 “con-
tinuous”	 for	displaying	continuous	disparity	curves	and	 (2)	 “box”,	
“lines”,	 or	 “polygons”	 to	 display	 them	using	 boxplots,	 confidence	
interval	lines	or	polygons,	respectively.	Additional	arguments	spe-
cific	to	dispRity	objects	can	also	be	used	such	as	observed	to	
display	 the	 observed	 disparity	 (i.e.	 non-bootstrapped)	 or	 rar-
efaction	 to	only	plot	the	disparity	for	a	certain	number	of	ele-
ments	 (i.e.	 the	 rarefaction	 level).	 The	 function	 can	 also	 take	 any	
additional	graphic	arguments	(main,	xlab,	col,	etc...)	from	base	R.

2.4.2. | Testing hypotheses

The	test.dispRity	function	allows	users	to	test	hypotheses	on	
the	disparity	data.	Similarly	 to	 the	dispRity	 function	described	

FIGURE 2 dispRity	package	
workflow:	rectangles	represent	matrices;	
ellipses	represent	functions;	plain	black	
arrows	indicate	input/output;	dashed	
grey	arrows	indicate	output	(though	
the	summary,	plot,	and	test	function	
cannot	be	applied	if	no	disparity	has	been	
calculated)
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above,	 this	 function	 can	 take	 any	 test	 defined	 by	 the	 user	 or	
from	other	r	packages.	The	comparison	arguments	 indicates	 in	
which	 order	 (if	 any)	 the	 tests	 should	 be	 applied	 to	 the	 subsets:	 
(1)	 “pairwise”	 for	 pairwise	 comparisons;	 (2)“referential”	 for	 com-
paring	the	first	subset	to	all	the	others;	(3)	“sequential”	for	compar-
ing	subsets	sequentially	 (e.g.	 first	against	second,	second	against	
third,	etc.);	(4)	“all”for	comparing	all	the	subsets	simultaneously	(i.e.	 
disparity	 	 	 ̴	 subsets)	 or	 (5)	 any	 list	 of	 pairs	 of	 subsets	 to	
compare.

Some	 tests	 are	 implemented	 within	 the	 package	 such	 as	 the	
Bhattacharrya	 Coefficient	 (bhatt.coeff;	 Bhattacharyya,	 1943;	
Guillerme	&	Cooper,	2016),	a	permutation	test	based	on	null	hypothe-
sised	multidimensional	space	following	(null.test; Díaz	et	al.	2016;	
Manly	1997)	as	well	as	a	wrapper	for	the	vegan::adonis	 (Oksanen	
et	al.,	2007)	and	geiger::dtt	(Harmon	et	al.,	2008)	functions	(respec-
tively	adonis.dispRity and dtt.dispRity).	This	function	also	al-
lows	additional	arguments	such	as	rarefaction	(as	described	above)	
or correction	 to	 adjust	 p-values	 when	 using	 multiple	 parametric	
tests.

3  | E X AMPLES

Multivariate	analysis	can	be	 really	useful	 for	 looking	at	multiple	as-
pects	of	organisms’	diversity	together.	For	example,	one	can	also	look	
the	diversity	of	morphologies	 (or	disparity;	Foote,	1991).	Using	dis-
parity,	 it	 is	 then	also	possible	to	assess	whether	one	ecosystem	or/
and	 time	 period	 display	more	morphological	 variation.	 The	 follow-
ing	example	 is	based	on	a	classical	morphological	disparity	analysis.	
Note	that	more	examples	are	available	in	the	package	manual	(https://
rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.
html).

3.1 | dispRity data

The	package	contains	a	dataset	that	is	a	subset	from	Beck	and	Lee	
(2014)	and	includes	the	following:

• BeckLee _ mat50:	an	ordinated	matrix	for	50	mammals	based	on	
the	distance	between	discrete	morphological	characters.

TABLE  2 Definition	of	the	disparity	metrics	currently	implemented	in	the	dispRity	package.	k	is	the	number	of	dimensions,	n	the	
number	of	elements,	Γ	is	the	Gamma	distribution,	λi	is	the	eigenvalue	of	each	dimensions,	σ

2	is	their	variance	and	Centroidk	is	their	mean,	
Ancestorn	is	the	coordinates	of	the	ancestor	of	element	n,	f(vk)	is	a	function	to	select	one	value	from	the	vector	v	of	the	dimension	k	(e.g.	its	
maximum,	minimum	and	mean,	etc.),	R	is	the	radius	of	the	sphere	or	the	product	of	the	radii	of	each	dimensions	(

∏k

i=1
Ri—for	a	hyper-ellipsoid).

Name Description Dim Definition Source

ancestral.dist The	distance	between	an	
element	and	its	ancestor

2
�∑n

i=1
(kn−Ancestorn)

2 This	package

centroids The	distance	between	each	
element	and	a	fixed	pointa	of	
the	space

2
�∑n

i=1
(kn−Centroidk)

2 This	package

convhull.surface The	surface	of	the	convex	hull 1 NA geometry::convhulln	(Barber,	Dobkin	&	
Huhdanpaa,	1996;	Habel,	Grasman,	
Gramacy,	Stahel,	&	Sterratt,	2015)

convhull.volume The	volume	of	the	convex	hull 1 NA geometry::convhulln	(Barber	et	al.,	
1996;	Habel	et	al.,	2015)

diagonal The	greatest	Euclidean	distance 1
�∑k

i=1
(max (ki)−min (ki))

2 This	package

ellipse.volumeb The	volume	of	the	ellipsoid 1 πk∕2

Γ(
k

2
+1)

k∏
i=1

(λ
0.5
i
)

This	package;	based	on	Donohue	et	al.	
(2013)

mode.val The	modal	value 1 NA This	package

n.ball.volume The	hyper-spherical	(n-ball)	
volume

1 πk∕2

Γ(
k

2
+1)

k∏
i=1

R
This	package

pairwise.dist The	pairwise	distances	between	
elements

2 NA vegan::vegdist	(Oksanen	et	al.,	2007)

radius The	radius	of	each	dimensions 2 �
∑n

i=1
ki

n
− f(vk)� This	package

ranges The	absolute	ranges	of	each	
dimension

2 |max (ki)−min (ki)| This	package

span.tree.length The	minimal	spanning	tree	
length

1 ∑(branch	length) vegan::spantree	(Oksanen	et	al.,	2007)

variances The	variance	of	each	dimension 2 σ2ki This	package

aBy	default	that	point	is	the	centroid	of	the	elements
bThis	function	uses	a	fast	estimation	of	the	eigenvalue	that	only	works	in	an	ordinated	space	based	on	MDS	or	PCO/PCoA	(not	PCA)

https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
https://rawgit.com/TGuillerme/dispRity/master/inst/gitbook/_book/index.html
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• BeckLee _ mat99:	the	same	matrix	BeckLee _ mat50	with	the	
reconstruction	of	their	49	ancestors.

• BeckLee _ tree:	 a	 chronogram	 with	 the	 50	 mammal	 species	
present	in	BeckLee _ mat50 and BeckLee _ mat99.

• BeckLee _ ages:	 the	 first	 and	 last	 occurrence	 data	 for	 14	
of	 the	 mammal	 species	 present	 in	 BeckLee _ mat50 and 
BeckLee _ mat99.

• disparity:	a	pre-analysed	dispRity	object	based	on	the	data	
above.

In	this	example,	the	space	is	defined	as	a	morphospace:	the	ordi-
nation	of	the	distances	among	discrete	morphological	characters	for	
50	mammal	 species	Beck	&	Lee,	 2014).	Additionally,	we	 can	define	
disparity	as	the	sum	of	the	variances	on	each	dimension	(Foote,	1991;	
Wills,	Briggs,	&	Fortey,	1994)	that	will	represent	an	aspect	of	the	vol-
ume	of	the	morphospace.

3.2 | Typical disparity among groups analysis

One	 typical	 question	 with	 such	 analysis	 would	 be	 to	 test	
whether	 two	 groups	 of	 species	 have	 a	 different	 disparity.	 For	
example,	using	the	data	described	above,	we	can	test	whether	
the	 crown	 mammals	 are	 more	 diverse	 in	 term	 of	 morphology	
than	the	stem	ones.	In	other	words,	whether	the	approximation	
of	the	volume	within	the	morphospace	is	different	 in	crown	or	
stem	mammals.	These	two	groups	can	be	defined	using	one	of	
the	package's	utility	 functions,	crown.stem	 that	 separate	 the	
crown	and	 stem	 species	 given	 a	phylogeny	 (allowing	 to	 ignore	
the	nodes	or	not):

 

It	 is	 then	 possible	 to	 measure	 the	 disparity	 between	 the	 two	
groups	as	follows:

Note	that	this	function	is	a	wrapper	function	that	is	the	equiv-
alent	to:

Which	 allows	 fine	 tuning	 of	 the	 optional	 arguments	 in	 each	
function.	 The	 three	 arguments	 here	 are	 defined	 as	 follows:	data 
= BeckLee _ mat50	 is	our	space,	group = mammal _ groups 
indicates	which	mammals	 belong	 to	which	 group	 and	metric = 

c(sum, variances)	 is	 our	 definition	 of	 disparity	 (Ciampaglio	
et	al.,	2001;	Foote,	1991;	Wills	et	al.,	1994).

This	 function	 returns	 a	dispRity	 object	 that	 summarises	 the	
disparity	analysis:

As	 indicated,	 the	 dispRity	 object	 contains	 two	 customised	
subsets	 from	a	morphospace	made	of	 50	 elements	 for	 48	dimen-
sions.	The	dispRity	object	also	displays	information	on	the	num-
ber	and	method	of	the	bootstrap	replicates	as	well	as	the	definition	
of	disparity.	To	visualise	the	actual	disparity	values,	one	can	use	the	
summary	or/and	plot	functions	(Table	3	and	Figure	3):

As	we	 can	 see	 from	 the	 summary	 table	 (Table	3)	 and	 the	plot	
(Figure	3),	there	seems	to	be	a	significant	difference	in	morphospace	
volume	occupied	between	the	two	groups.	It	is	possible	to	test	this	

TABLE  3 Summarising	a	dispRity	object	(disparity	per	groups).	n	is	the	number	of	elements	per	subsets,	obs	the	observed	disparity	(not	
bootstrapped),	bs.median	is	the	median	bootstrapped	disparity	(here	the	median	of	the	sum	of	variances)	and	the	2.5%,	25%,	75%	and	97.5%	
are	the	confidence	intervals

Subsets n Obs bs.median 2.5% 25% 75% 97.5%

1 Crown 30 2.00 1.93 1.87 1.92 1.95 1.98

2 Stem 20 1.72 1.63 1.53 1.60 1.66 1.69

FIGURE 3 dispRity	plot	of	disparity	differences	between	groups

Cr Stem
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hypothesis	 by	 using,	 for	 example,	 a	 nonparametric	Wilcoxon	 test	
(stats::wilcox.test):

As	indicated	by	the	p	value,	there	is	a	significant	difference	in	dispar-
ity	between	the	groups.	Note	that	by	default	the	function	only	outputs	
the	test's	statistic,	parameter	(if	parametric)	and	the	p	value.	However,	the	
raw	test	results	can	also	be	output	using	the	option	details = TRUE 
in	 the	 function	above.	Additionally,	 the	 test	 is	here	performed	on	 the	
pooled	bootstrapped	pseudo-replications	which	can	 increase	 the	 type	
I	error.	It	is	possible	to	compare	each	bootstrap	in	a	pairwise	way	with-
out	pooling	the	data	by	using	the	concatenate = FALSE	argument.	
The	results	will	then	be	a	distribution	of	statistics	and	p	values.	Relating	
back	to	our	question:	yes,	crown	mammals	display	a	higher	diversity	in	
morphologies	than	their	stem	counterparts	(in	this	example	and	dataset).

3.3 |  Typical disparity-through-time analysis

A	subsequent	question	to	this	observation	could	be	to	test	whether	
this	difference	is	due	to	an	overall	change	in	disparity	through	time	
or	not.	Using	the	same	definition	of	the	multidimensional	space	and	
disparity	as	 in	the	previous	example,	we	can	measure,	for	example,	
changes	 in	 disparity	 through	 time	 between	 the	 Late	 Cretaceous	
(100.5–66.0	million	years	ago—Mya),	the	Paleocene	(66.0–56.0	Mya)	
and	the	Eocene	(56.0–33.9	Mya).	Note	that	stratigraphic	times	can	be	
generated	automatically,	using	the	get.bin.ages	utility	function.

It	 is	 then	possible	 to	measure	disparity-through-time	using	 the	
following	function:

Note	that	this	function	is	a	wrapper	function	that	is	the	equivalent	to:

The	 arguments	 data = BeckLee _ mat50 and metric = 

c(sum, variances)	 are	 the	 same	 as	 in	 the	 example	 above.	
However,	in	this	type	of	analysis,	we	also	need	to	have	additional	ar-
guments:	the	time = time _ bins	indicates	the	boundaries	of	the	
different	time	bins,	the	tree = BeckLee _ tree	argument	provides	
information	on	the	age	of	each	element	and	method = "discrete" 
indicates	that	the	data	is	time-binned.	The	resulting	dispRity	object	
can	be	summarised	and	plotted	(Table	4	and	Figure	4):

Note	that	many	plot	options	specific	 to	dispRity	objects	are	
available	such	as	plotting	disparity	in	a	“continuous”	fashion	(infer-
ring	disparity	between	the	time	bins).

Similarly	to	the	example	above,	it	is	also	possible	to	statistically	
test	 this	 hypothesis	 using,	 for	 example,	 multivariate	 permutation	
ANOVA	 (PERMANOVA;	 Anderson,	 2001)	 through	 the	 adonis.

TABLE  4 Summarising	a	dispRity	object	(disparity	through	time).	n	is	the	number	of	elements	per	subsets,	obs	the	observed	disparity	
(not	bootstrapped),	bs.median	is	the	median	bootstrapped	disparity	(here	the	median	of	the	sum	of	variances)	and	the	2.5%,	25%,	75%	and	
97.5%	are	the	confidence	intervals

Subsets n Obs bs.median 2.5% 25% 75% 97.5%

1 100.5-66 15 1.67 1.55 1.40 1.51 1.58 1.65

2 66–56 9 1.88 1.69 1.43 1.63 1.77 1.83

3 56–33.9 13 1.96 1.83 1.62 1.77 1.86 1.90

F IGURE  4 dispRity	plot	of	disparity-through-time.	The	black	
line	represents	the	median	disparity	(median	sum	of	variances),	the	
dark	grey	and	light	surfaces	represent	respectively	the	50%	and	
95%	confidence	intervals

– – –
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dispRity	 function	 that	 is	 a	 wrapper	 of	 the	 vegan::adonis 
	function	(Oksanen	et	al.,	2007)	for	dispRity	objects: 

To	answer	our	specific	question	above:	yes,	there	is	an	effect	of	
time	on	morphological	disparity	(an	increase)	in	this	dataset	(Table	5).	
Note	 that	 in	 this	case,	 the	 function	outputs	different	warnings	on	
the	usage	of	such	test	and	the	eventual	data	not	used	 in	 the	test.	
Additionally,	 the	 test	 is	 not	 applied	 to	 the	 bootstrapped	data	 and	
thus	might	be	sensitive	to	outliers	and	sampling	size.

4  | ADDITIONAL INFORMATION

4.1 | Manuals and vignette

Supplementary	information	concerning	the	package	and	each	func-
tion	 can	 be	 found	 in	 R,	 on	 the	 project	 page	 (https://github.com/
tguillerme/dispRity)	 or	 in	 the	 online	 manual	 (https://rawgit.	 com/
TGuillerme/dispRity/master/inst/gitbook/_book/index.html).	 This	
manual	contains	substantially	more	information	and	detailed	exam-
ples	including	a	tutorial	for	a	“classic”	disparity	analysis	in	palaeobiol-
ogy	as	well	as	an	introduction	to	the	use	of	this	package	in	ecology	
or	other	disciplines.

4.2 | Data simulations

This	package	also	contains	functions	for	simulating	random	discrete	
morphological	matrices	(sim.morpho)	or	random	multidimensional	
spaces	(space.maker).	These	functions	are	based	on	a	similar	mod-
ular	architecture	as	that	used	by	the	dispRity	functions,	allowing	
users	 to	provide	 their	own	distribution	parameters	 for	 the	simula-
tions.	For	example,	stats::rnorm	can	be	provided	as	an	argument	
for	drawing	normal	characters	rates	with	sim.morpho or normally 
distributed	spaces	with	space.maker.	The	discrete	morphological	
data	simulations	are	based	on	protocols	from	Guillerme	and	Cooper	
(2016),	 O’Reilly	 et	al.	 (2016)	 and	 Puttick	 et	al.	 (2017).	 The	 space	
simulations	are	based	on	the	methods	from	Díaz	et	al.	(2016).	Both	
functionalities	are	described	in	more	details	in	the	package	manual.

5  | CONCLUSION

The	dispRity	package	is	based	on	a	modular	architecture	allowing	
researchers	to	simply	define	both	their	multidimensional	space	and	

their	 disparity	metric	 to	 efficiently	 analyse	multivariate	 data.	 The	
dispRity	object	allows	users	to	pipeline	disparity	analysis	from	the	
data	input	(the	matrix)	to	publication	standard	results	(tables,	plots,	
hypothesis	testing).

6  | PACK AGE LOC ATION

The	dispRity	package	is	available	on	the	CRAN	at	https://cran.r-pro-
ject.org/web/packages/dispRity/index.html	 or	 on	 GitHub	 at	 https://
github.com/TGuillerme/dispRity	with	more	associated	information.	All	
the	versions	of	the	package	are	archived	on	ZENODO	with	associated	
DOI	https://zenodo.org/record/1186467#.WtfbGsi-kW8.
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