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ABSTRACT
Biological communities are changing rapidly in response to human activities, with the high rate of vertebrate species extinction 
leading many to propose that we are in the midst of a sixth mass extinction event. Five past mass extinction events have com-
monly been identified across the Phanerozoic, with the last occurring at the end of the Cretaceous, 66 million years ago (Ma). 
However, life on Earth has always changed and evolved, with most species ever to have existed now extinct. The question is, are 
human activities increasing the rate and magnitude of extinction to levels rarely seen in the history of life? Drawing on the liter-
ature on extinctions primarily over the last 66 million years (i.e., the Cenozoic), we ask: (1) what comparisons can meaningfully 
be drawn? and (2) when did the Earth last witness an extinction event on this scale? We conclude that, although challenging to 
address, the available evidence suggests that the ongoing extinction episode still falls a long way short of the devastation caused 
by the bolide impact 66 Ma, but that it has likely surpassed most other Cenozoic events in magnitude, with the possible exception 
of the Eocene–Oligocene transition (34 Ma), about which much uncertainty remains. Given the number of endangered and at-
risk species, the eventual magnitude of the current event will depend heavily on humanity's response and how we interact with 
the rest of the biosphere over the coming millennia.
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1   |   Introduction

Human activities have resulted in rapid and far-reaching 
changes to global biodiversity (Ellis et al. 2021; Thomas 2020). 
This includes the extinction of almost two thirds of terres-
trial vertebrate megafauna (Svenning et al. 2024; Turvey and 
Crees  2019), and the mass movement of species across the 
globe (Thomas 2020), with major impacts seen since at least 
the Late Pleistocene (~130,000 years ago) and forecast far into 
the future (Andermann et  al.  2020; Davis et  al.  2018; Ellis 
et al. 2021; Gordon et al. 2024; Matthews et al. 2024). Based 
on comparisons with background estimates from the fossil re-
cord, the rate at which species are currently going extinct has 
led many scientists to propose that we are now entering a sixth 
mass extinction (Barnosky et  al.  2011; Ceballos et  al.  2015; 
Leakey and Lewin 1995; Pimm et al. 2014). The Earth has ex-
perienced multiple climatic and environmental perturbations, 
including five such “events” across the Phanerozoic (the last 
541 million years) interpreted as mass extinctions. The most 
recent of these occurred at the Cretaceous/Paleogene (K/Pg) 
boundary, 66 million years ago (Ma). Uncertainty remains as 
to whether the current extinction rate and magnitude are in-
deed higher than at any time over the last 66 million years, 
that is, the Cenozoic (Barnosky et al. 2011; Cowie et al. 2022), 
and if they are already comparable to those associated with 
events such as the bolide impact that ended the age of the 
non-avian dinosaurs at the K/Pg boundary (e.g., Chiarenza 
et  al.  2020) or the large-scale volcanic activity thought re-
sponsible for the end-Permian Great Dying, 252 Ma (e.g., Chen 
and Benton  2012). Put more simply, is the Earth currently 
experiencing a mass extinction event, or one only severe on 
human timescales? This is important to answer if we want to 
use the past as an analogue for understanding and predicting 
the scale of the ongoing biodiversity crisis, including recovery 
times and long-term ramifications to the biosphere.

More than 99% of all species that have ever existed are now 
extinct, with extinction being a fundamental evolutionary 
process; however, definitions and detections can prove chal-
lenging (Jablonski 2004; Raup 1991). The exact timing of ex-
tinction is difficult to determine both in the present and in the 
past (Purvis et al. 2000). The loss of a population from a par-
ticular geographic area (i.e., local extinction or extirpation) 
may or may not be a precursor to global extinction (Congreve 
et al. 2018), while knowledge of the distribution of all popula-
tions of a species is also rare (e.g., Pearson et al. 2006). Species 
also become “functionally” extinct long before this point. 
Functional extinction occurs when a population becomes so 
low that it has limited impacts on other species due to its rarity 
and where recovery is no longer realistic (e.g., due to various 
Allee effects or continued environmental changes that led to 
the original decline, e.g., Säterberg et  al.  2013). Over longer 
time periods, the issues of pseudoextinction and Lazarus taxa 
are encountered. Pseudoextinction occurs when all the mem-
bers of a species are lost but their descendants survive as a 
daughter species, highlighting the issue of species delineation 
and the extent to which this is comparable between fossil and 
living taxa (Raup 1991). Lazarus taxa disappear from the fos-
sil record, assumed to be extinct, but are then detected in a 
later time period, indicating a lack of detection rather than 
genuine absence (Jablonski 1986).

Here, we synthesize previous literature investigating both 
past extinctions and ongoing biodiversity change to place the 
period of anthropogenic extinctions in the wider geological 
context. To do this, we start by examining the events tradi-
tionally seen as the largest of all extinction events—the five 
Phanerozoic mass extinctions. We follow this by discussing 
extinction events over the last 66 million years, that is, since 
the last mass extinction and when Earth's ecosystems and bio-
diversity have been the most similar to those of the present 
day. We then consider the anthropogenic extinction event, 
defined herein as spanning the last interglacial (~130 ka) to 
the present. This represents the well-established time frame of 
increasing human planetary influence, from the megafaunal 
extinction, through to the current period where humans have 
modified the planet to such an extent that our influence is in-
escapable (Thomas 2020; Svenning et al. 2024). We then dis-
cuss the challenges of making meaningful comparisons given 
the contrasting biases between the fossil record and present-
day biodiversity data, explore comparisons that can be made, 
and finish by discussing what these mean for the future of bio-
diversity. By reviewing the evidence, we address the central 
hypothesis that the ongoing anthropogenic extinction event is 
comparable in magnitude and rate to past events considered 
mass extinctions.

2   |   Extinctions Past, Present, and Future

2.1   |   The ‘Big Five’

Although there will always be species extinctions, some time 
periods are known for their atypically high rates (extinc-
tion events), with the greatest of these being labelled “mass 
extinctions.” However, such events are difficult to define. 
One commonly cited definition of a mass extinction event is 
a “substantial increase in the amount of extinction suffered 
by more than one geographically wide-spread higher taxon 
during a relatively short interval of geologic time, resulting 
in an at least temporary decline in their standing diversity” 
(Sepkoski 1986, 278). The ambiguity in this definition has led 
to more quantitative interpretations, such as 75% of species 
becoming extinct in < 2 million years (Barnosky et al. 2011). 
Through their dramatic impact on both species and ecosys-
tems over relatively (geologically) short periods of time, these 
events have undoubtedly shaped the evolutionary history of 
life on Earth across the past ~550 million years (Hull and 
Darroch 2013; McGhee et al. 2004; Raup and Sepkoski 1982). 
Only five instances are believed to have been this devastat-
ing and widespread and are often described as the ‘Big Five’ 
mass extinctions (Figure  1). These events are: (1) the Late 
Ordovician mass extinction (~445 Ma); (2) the prolonged Late 
Devonian mass extinction(s) (~370–360 Ma); (3) the Permian–
Triassic mass extinction (~252 Ma); (4) the Late Triassic mass 
extinction (~201 Ma); and (5) the Cretaceous-Paleogene (K-Pg) 
mass extinction (~66 Ma) (Raup and Sepkoski 1982).

The extent to which the “Big 5” are genuinely distinct from 
other extinction events is debated, given that the Phanerozoic 
has been punctuated by many smaller scale and often less well-
known extinction events (Raup  1986), with constantly fluc-
tuating rates suggesting a continuum of extinction episodes 
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FIGURE 1    |     Legend on next page.
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(Harper et  al.  2020). Only the Late Ordovician, Permian–
Triassic, and Cretaceous-Paleogene extinctions stand out 
on magnitude alone, with diversity losses during the Late 
Devonian and Late Triassic being at least partially attribut-
able to reductions in origination rates (Bambach 2006). On the 
other hand, Bambach (2006) identified at least 18 substage in-
tervals across the Phanerozoic that could be seen as mass ex-
tinctions using a marine genus-level compendium (Figure 1). 
This means that all detectable spikes in extinction rate could 
be considered mass extinctions, or the term could be reserved 
for the largest three (i.e., Late Ordovician, Permian–Triassic 
and Cretaceous-Paleogene), which are distinct extinction 
anomalies even when accounting for various data constraints 
(see 3).

Consideration must also be given to the other elements of 
the definition, that is, multiple geographically widespread 
higher taxa disappearing within a relatively short time 
(Sepkoski 1986). This again has proven contentious, especially 
as most studies have been reliant on compilations dominated 
by the best-preserved marine taxa (Figure 1), with terrestrial 
extinction rates harder to quantify due to the sparser fossil 
record (e.g., Benson et  al.  2021). Some events not viewed as 
mass extinctions have resulted in significant global changes, 
such as the Carnian Pluvial Episode (234–232 Ma), which saw 
the large-scale loss of genera but also major diversification, 
resulting in substantial turnover (Dal Corso et al. 2020). Many 
known extinction events are also more geographically or taxo-
nomically restricted (Arcila and Tyler 2017; MacLeod 1994), or 
primarily affected organisms with particular traits (Aberhan 
and Baumiller  2003; Pimiento et  al.  2017; Pym et  al.  2023). 
Past diversity is usually measured at the level of genera, rather 
than species, with the challenge of identifying species, among 
other factors, resulting in the proliferation of genus-level pa-
laeobiological analysis (Hendricks et al. 2014). Conversion of 
genus-level estimates into species loss creates further compli-
cations, with factors such as the phylogenetic clustering of ex-
tinctions having a major role (Stanley 2016). Uncertainty also 
arises because a widespread genus in the fossil record could 
be represented by one of a few widespread species, or by very 
large numbers of more localized species with different biogeo-
graphic ranges (Hallam and Wignall 1997).

Understanding the rate of extinction is as important as estimat-
ing its magnitude. The “highest” temporal resolution that can 
be reliably reached fordeep-time estimates such as those used 
for the “Big Five” is often on the order of hundreds of thou-
sands to millions of years (Erwin 2006). Particularly complete 
geological sections and advanced methodological approaches 
have resulted in higher resolutions (e.g., Dean et al. 2020; Fan 
et  al.  2020; Lyson et  al.  2019) but these are uncommon and 
difficult to correlate in order to gain a picture of the rapidity of 
the event on a global scale. Extinction events are, however, in-
creasingly being perceived as pulses (Spalding and Hull 2021), 

which only appear to be gradual (smooth) increases in extinc-
tion rates when averaged over longer periods of time. High 
resolution data (i.e., comparable to that used when consid-
ering anthropogenic extinctions) would capture these peaks 
in extinction rate, but coarser data (i.e., which characterises 
most of the fossil record) would produce a lower rate, aver-
aged over a longer period of time, as extinction pulses would 
be inextricably combined with periods of low or background 
extinctions. This issue has been shown to impact perceptions 
of deep-time fluctuations in diversity, such as the decline in 
Cretaceous North American dinosaurs (Dean et  al.  2020). 
In other cases, an extinction event with a large magnitude 
(i.e., a large reduction in standing diversity) might only have 
a limited impact on ecological processes at any given time if 
the species turnover took place gradually over a long period. 
A slow decline in generic diversity over one or more million 
years in the fossil record, for example, may represent a recog-
nizable anomaly, but might not be seen as an extinction event 
or crisis on a decadal to millennial timescale (Bambach 2006). 
To try and resolve this, attempts have been made to estimate 
the temporal duration of heightened extinction rates based on 
the hypothesized causes. For example, the K-Pg event is con-
sidered to have been geologically instantaneous because of the 
rapid cessation of photosynthesis caused by the consequent 
“impact winter,” that is, global cooling associated with the 
rapid release of sulfate aerosols (Morgan et al. 2022; Schulte 
et al. 2010). The Late Ordovician, in contrast, is seen as at least 
two distinctive pulses attributed to cooling, glaciation and 
changes in ocean chemistry (Harper 2024).

Defining mass extinctions and comparing events to one another 
is therefore a complex and sometimes subjective process. Given 
the complex causes and consequences, even the largest extinc-
tions that we know of, the “Big Five,” are very different to one 
another and have nuanced trajectories (e.g., Foster et al. 2023). 
Rate and magnitude changes alone are unlikely to meaningfully 
capture the consequences of such events for Earth systems and 
the biosphere. Attempts to categorise what is, in effect, a contin-
uous scale may in this case not be useful. This complexity and 
continuum of magnitudes of extinction “events” complicates 
discussions of whether the present day represents a potential 
‘Big Sixth’ mass extinction, and therefore the greatest extinction 
event in the last 66 million years. Nonetheless, it is possible to 
conclude that all of the “Big Five” mass extinctions were charac-
terised by the Earth's physical and then biological conditions de-
viating outside the range previously experienced, leading many 
species to disappear in each case.

While there has been much debate on the threshold that defines 
a mass extinction (Barnosky et al. 2011; Marshall 2023), there is 
even less consensus on what distinguishes a smaller, non-mass 
extinction from the “normal” background rate of extinction. One 
possibility is to consider extinction rates to constitute an “event” 
when they substantially exceed the background extinction rate 

FIGURE 1    |    Number of fossil marine animal genera over the Phanerozoic based on Sepkoski's compendium (Peters 2022; Sepkoski 1981, 2002). 
Reproduced using the R packages sepkoski (Jones 2022) and deeptime (Gearty 2024). In the top panel the arrows indicate the Big Five mass ex-
tinction events with estimates of the percentages of genera becoming extinct. The bottom panel shows the 18 sub-stage intervals identified by 
Bambach (2006). A percentage of extinct genera was not given for the Pliocene.
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but fail to reach the threshold of a mass extinction. This defini-
tion is how we have selected smaller extinction events for dis-
cussion below.

2.2   |   The Last 66 Million Years

The most recent mass extinction event took place at the end 
of the Cretaceous, heralding the end of the Mesozoic and the 
beginning of the Cenozoic, 66 Ma. The large asteroid impact 
in the Yucatán Peninsula of Mexico and subsequent wildfires 
resulted in dust, sulfate aerosols, CO2, soot, and water vapor 
entering the atmosphere, which led to rapid, extreme climatic 
cooling and ocean acidification (Chiarenza et  al.  2020; Hull 
et  al.  2020; Morgan et  al.  2022). An estimated 40% of genera 
and 76% of species were lost (Barnosky et  al.  2011), including 
the extinction of many vertebrate and invertebrate groups, most 
famously the non-avialan dinosaurs and ammonites, although 
no taxonomic group passed through the K/Pg boundary entirely 
unscathed (Hallam and Wignall 1997). The process was likely 
rapid (Chiarenza et al. 2020), meaning that both the magnitude 
and rate of extinction were extremely high.

Major losses in taxonomic groups that were dominant during the 
Cretaceous mean that much of the floral and faunal composition 
of present-day ecosystems originated in the Cenozoic (Finnegan 
et al. 2024). Although Cenozoic extinction events were of lower 
magnitude than some others that preceded them, they are likely 
to have been the most comparable to present-day extinctions in 
terms of the ecosystems and higher taxa involved. As such, al-
though we draw on deeper time comparisons, our primary focus 
in this contribution is on the Cenozoic.

The Cenozoic fossil record provides evidence for several extinc-
tion events since the K-Pg event. Although not as devastating as 
the latter extinction, all of these appear to have been taxonom-
ically, environmentally, and geographically wide-ranging, with 
long-term consequences for the biosphere (Figures  2 and 3). 
These are the Paleocene-Eocene Thermal Maximum (~56 Ma), 
the Eocene–Oligocene transition (~34 Ma), and the Pliocene 
to Pleistocene transition (~2.6 Ma) (Bambach  2006; Finnegan 
et al. 2024; Harnik et al. 2012).

The events defining the start and end of the Eocene resulted 
in substantial change in the Earth's systems. The PETM saw 
rapid warming (> 5°C global mean average increase) and 
ocean acidification, attributed to volcanic carbon releases 
within < 10,000 years (Aze  2022; Harnik et  al.  2012; Haynes 
and Hönisch 2020; Tierney et al. 2022). This led to turnover in 
many communities and elevated extinction rates for metazoan 
reef species (Kiessling and Simpson  2011), calcareous nanno-
plankton (Gibbs et al. 2006), and benthic foraminifera (Speijer 
et al. 2012). The event is perhaps most notable for the high mag-
nitude of extinction in the latter group, which had been relatively 
unscathed by the K-Pg event but suffered a decline at the PETM 
(33%–65% of species lost (Speijer et al. 2012)) unparalleled in the 
rest of its Cenozoic timeline (Hallam and Wignall  1997). The 
current evidence suggests that although geographically wide-
spread (e.g., Babila et al. 2022), high extinction magnitudes were 
restricted to marine taxa sensitive to the rapid warming, acidi-
fication, and deoxygenation of oceanic water, with only limited 

evidence for terrestrial plant and mammal extinctions (Clyde 
and Gingerich 1998; Jaramillo et al. 2006; Yao et al. 2018).

Global cooling at the end of the Eocene (~34 Ma) is believed to 
have caused the Eocene–Oligocene extinction event (Harnik 
et al. 2012). In comparison with the PETM, there is more evi-
dence that both the marine and terrestrial realms were strongly 
affected, and the event appears more clearly in fossil record 
analyses (Figures 1 and 2), but it is challenging to narrow down 
the event's duration and the concurrence of regional changes. 
For example, elevated extinction magnitudes are found for some 
groups of foraminifera, with planktonic forms suffering one 
of their worst extinction events (Pearson et  al.  2008; Lowery 
et al. 2020). Foraminifera extinctions are estimated at < 15% of 
species at the Eocene–Oligocene boundary, but are higher when 
combined with other late Eocene extinctions (Keller  1986). 
Similar patterns are reported for calcareous nannoplankton 
and mollusks, which both show a drawn-out loss and turnover, 
with marine extinctions extended across an interval of at least 1 
million years (Lowery et al. 2020) and perhaps up to 14 million 
years in duration for some groups (Hallam and Wignall 1997). 
The diversity of early stem whales (“archaeocetes”) also appears 
to have declined across the Eocene–Oligocene transition (Corrie 
and Fordyce 2022). In the terrestrial realm, there is evidence for 
relatively rapid continental-scale extinctions in mammals (de 
Vries et al. 2021; Hooker et al. 2004; Weppe et al. 2023), with 
magnitude estimates for western Europe's endemic artiodactyls 
being as high as 77% of species (62% genera) lost over a million-
year period (Weppe et al. 2023). There is also evidence for diver-
sity declines in reptilian groups, at least in Europe and North 
America (Cleary et  al.  2018; Mannion et  al.  2015). Increased 
extinction in South American plants has also been documented 
(Jaramillo et  al.  2006). Overall, however, evidence points to-
ward a prolonged, and potentially spatially heterogeneous, spe-
cies turnover in response to global cooling and changing aridity 
(Hallam and Wignall 1997; Mannion et al. 2015; Sun et al. 2014).

Global cooling again coincided with elevated extinction rates 
as the Pliocene transitioned into the Pleistocene (2.6 Ma), 
with marine megafauna particularly strongly affected. It is 
estimated that 36% of the Pliocene marine megafaunal gen-
era did not survive into the Pleistocene (Pimiento et al. 2017). 
Localized extinctions at the end of the Pliocene have also been 
noted for Caribbean mollusks and corals (Pimiento et al. 2020; 
van Woesik et al. 2012), as well as the loss of many terrestrial 
African megaherbivores (Bibi and Cantalapiedra 2023) and ben-
thic foraminifera (Hayward et  al.  2007). Again, however, it is 
difficult to currently identify a major global event, with extinc-
tions unfolding over multi-million-year time scales.

In summary, the current evidence suggests that many of the 
perceived extinction events in the Cenozoic may have been a 
drawn-out series of localised and shorter-term events that, in 
combination, resulted in large global turnover. The K-Pg and 
Eocene–Oligocene have the clearest evidence for impacts across 
a wide range of taxa and environments as well as the highest 
magnitude. The K-Pg and PETM, however, are the strongest 
candidates for relatively rapid rates meaning that changes in the 
global flora and fauna may have been perceivable on time scales 
more similar to those thought to characterise the proposed 
present-day “sixth mass extinction.”
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FIGURE 2    |     Legend on next page.
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2.3   |   The Anthropogenic “Sixth Mass Extinction”

A fundamental question is precisely when Homo sapiens  
started to significantly alter global systems and cause a spike 
in species extinctions. There are multiple phases of influence 
throughout the evolution of humans, but for many, the earli-
est evidence of anthropogenic disturbance is denoted by the 
extinction of the terrestrial megafauna. This starting point is 
not, however, free of controversy, as it relies on resolving the 
major drivers behind the Late Pleistocene extinctions. Nearly 
two thirds of megafaunal vertebrate genera (> 44 kg) became 
extinct by the end of the Pleistocene (11.7 ka) (Turvey and 
Crees  2019; Svenning et  al.  2024). Although this extinction 
rate is relatively high and the global impacts broad, the over-
all magnitude of this initial wave of extinction was limited 
due to its taxonomic and trait-based (body size, terrestrial) 

selectivity. Whilst the temporal co-occurrence of the extinc-
tions with the spread of Homo sapiens  across Earth's surface 
heavily implicates humans as a significant contributor to the 
event (Barnosky et al. 2004; Lemoine et al. 2023), the extent of 
the role of the individual versus combined contributions of cli-
mate versus human hunting and landscape modification (e.g., 
O'Keefe et al. 2023) in the late Pleistocene megafaunal extinc-
tion event is still debated, especially in relation to the fates of 
individual species (Lemoine et al. 2023; Seersholm et al. 2020; 
Stewart et al. 2021).

During the early Holocene (Holocene: 11.7 ka to present) hu-
mans spread to increasingly isolated islands. People, along with 
their commensals, such as nest predating rats, reached even 
remote islands, finding large numbers of island endemics (e.g., 
flightless birds) vulnerable to these new threats. Humans are 

FIGURE 2    |    Proportional extinctions (a), gap-filler (b) and second-for-third extinction rate (c) using 5 my bins and genera from the Paleobiology 
Database (download April 2025) and the divDyn R package (Kocsis et al. 2019). Points indicate the midpoint of each bin. Individual records were as-
signed based on the midpoint of their potential date. Black indicates all genera, blue genera from predominantly marine taxonomic groups and green 
mammals and reptiles. Records missing genus information and singletons were not considered. Due to the resolution these cannot be calculated for 
more recent bins.

FIGURE 3    |    A timeline of major Cenozoic extinction events. Produced using the R packages sepkoski (Jones 2022) and deeptime (Gearty 2024). 
Species silhouettes (phylo​pic.​org contributors (M. Brea Lueiro, T.M. Keesey, S. Traver, J. Taylor) and Inês Martins) show single examples for illustra-
tive purposes and are not intended to be comprehensive.
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thought to have expanded across the Pacific in the last 3.5 ka 
(Matisoo-Smith et al. 1998) and into East Polynesia within the 
last 1 ka (Wilmshurst et al. 2011), with the estimated extinction 
of ~1000 bird species (and any obligate parasites) resulting from 
human colonization (Duncan et  al.  2013). Recent estimates of 
global bird extinctions consider that ~12% of bird species (1300–
1500) have become extinct in the last ~130 ka, with the major-
ity of these being island species (Cooke et  al.  2023; Matthews 
et al. 2024). Island mammals were also lost, with regions such as 
the Caribbean and Madagascar strongly affected (Turvey 2009; 
Turvey and Crees  2019). In some cases, both the largest and 
smallest species became extinct, potentially in response to dif-
ferent drivers (Hansford et al. 2012). This combination of drivers 
expanded the taxonomic and geographic breadth of extinctions, 
overall contributing to a larger magnitude event. As human pop-
ulations and transport capabilities increased during the modern 
period (post-1500), hunting and the spread of human-associated 
species continued, leading to further extinctions (Turvey 2009; 
Turvey and Crees  2019). An increasing number of species 
were transported by trade and other human activities, with 
major increases in inter-regional spread after 1800 ad (Seebens 
et al. 2021). This was compounded by the acceleration and glo-
balization of habitat loss, as land was cleared for livestock, agri-
culture, and settlements (Gordon et al. 2024; Mottl et al. 2021).

The high prevalence of localised island species among the list 
of human-caused extinctions raises issues of how these waves 
of extinction will be seen through the fossil record. The magni-
tude of the current extinction rate would be underestimated by 
66%–98%, as nearly 30% of tetrapod species have little chance 
of fossilisation as they are not located in areas with long-term 
deposition (Krone et al. 2024). This underlines the fact that dif-
ferences in preservation potential in the fossil record introduce 
biases as to which groups of organisms can effectively be studied 
and compared (Sansom et al. 2010). It is also clear that apparent 
extinctions in the fossil record may actually be periods of per-
sistent rarity where a taxon is simply no longer detected due to 
reduced abundance (Hull et al. 2015).

2.4   |   An Uncertain Future

The Bramble Cay melomys (Melomys rubicola ) is the first mam-
mal species for which its extinction has been almost entirely at-
tributed to anthropogenic climate change, as erosion and storms 
beset its only known island population (Waller et  al.  2017). 
Climate change, including severe weather, has already been im-
plicated in the extinction (or extinction in the wild) of at least 41 
species (IUCN 2024). A meta-analysis considering published es-
timates of extinction risk and representative concentration path-
ways for the 21st century predicted that 3°C warming will result 
in an estimated 8.5% of species becoming extinct, with a rise of 
4.3°C increasing this to 16% (Urban 2015). Indeed, groups that 
have exhibited high extinction rates under climatic change in the 
past such as foraminifera are already starting to show declines 
in abundance and biomass as well as range shifts (Chaabane 
et al. 2024; Ying et al. 2024). Alongside climate change, land and 
sea use, as well as human appropriation of net primary produc-
tivity continue to rapidly change the planet. Future biodiversity 
is therefore highly dependent on socioeconomic scenarios.

Using diverse sets of these socioeconomic trajectories of 
human development and policy choices, several studies have 
explored future biodiversity trends, often finding an acceler-
ation of extinction rates attributed to land-use and climate 
change (IPBES  2016; Pereira et  al.  2010, 2024), but they 
also have been hampered by modeling and data limitations. 
Existing scenario studies often use a single model, analyze a 
single facet of biodiversity, or use different projections for fu-
ture land-use and climate when comparing multiple models 
(IPBES  2016). It is therefore not surprising that the sources 
of uncertainty in these scenarios are numerous and difficult 
to ascertain (Thuiller et  al.  2019). A recent extensive model 
intercomparison (Pereira et al. 2024) showed that, even when 
controlling for some of these aspects, substantial variation 
in outcomes can still be linked to both our choice of mod-
els and projections. Since these models, and similar studies, 
used different sources of biodiversity and driver data of var-
ied structure, resolution, and coverage (e.g., taxonomic, tem-
poral, spatial), it is unsurprising that current predictions of 
extinction risks also vary widely depending on the focus of 
each study. Nonetheless, despite the large range of estimated 
extinction levels, nearly all projections indicate large numbers 
of additional species-level extinctions, but none of them pre-
dicts extinction levels as high as 75% of species (given current, 
known threats).

Assuming losses of all threatened species, added to those al-
ready extinct (or extinct in the wild) since 1500 AD, Barnosky 
et  al.  (2011) estimated species losses of, on average, 32% 
(ranging from 14% in birds to 64% in cycads). Using a Late 
Pleistocene baseline, Davis et al. (2018) estimated that a cen-
tury from now we will have lost 16% of mammal species over 
the last 130 ka. These estimates, however, require many as-
sumptions, predominantly that current extinction probabil-
ities and rates will continue, and that IUCN categories are 
largely accurate. Barnosky et al. (2011) took this further and 
asked how long it would take for the percentage of species lost 
to reach mass extinction levels, that is, 75% species losses. 
Assuming the loss of all threatened species within the first 
century with high rates still continuing after, a mass extinc-
tion would be reached for terrestrial amphibians, mammals, 
and birds in ~240–540 years. If only Critically Endangered 
species were lost over 500 years followed by rate continuation, 
estimates range from 4450 to 11,330 years across groups for the 
75% threshold to be reached (Barnosky et al. 2011). A range of 
estimates has been produced by different studies depending 
on the data and assumptions made (Wiens and Saban 2025). 
On this basis, for mass extinction levels to be reached, high 
extinction rates must be maintained for either a few centuries 
or a few millennia, depending on the rate at which already 
threatened species are lost. However, this likely requires new 
threatening processes, extinction cascades or ecosystem tip-
ping points to emerge in the future, given that high rates would 
need to continue even after the loss of all currently threatened 
species to reach the 75% threshold for assessed groups (Wiens 
and Saban  2025). Unknown extinctions also clearly hamper 
the accuracy of any estimates (Cowie et al. 2025). Future sce-
narios are highly uncertain, and this hinders our ability to 
predict future extinction risk, particularly when many of the 
relevant processes are likely non-linear. It is clear, therefore, 
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that projections of a sixth mass extinction are heavily contin-
gent on the assumptions made.

The other side of this coin is speciation. Humans have moved 
species around the planet across distances and at rates exceed-
ing those of past biotic interchanges such as the Great American 
Biotic Interchange (Stigall 2019). As these new populations adapt 
to novel surroundings, they often contribute to the extinction of 
other species, as evidenced by our discussion of island extinc-
tions above; furthermore, it is estimated that introduced species 
have contributed to 25% of plant extinctions and 33% of animal 
extinctions documented by the IUCN (Blackburn et  al.  2019). 
They might also be expected to form new species over time, a 
process that could be accelerated by the strength of anthropo-
genic selection pressures and hybridisation (Thomas  2015). 
However, the extent to which this could offset losses is heav-
ily debated (Hulme et al. 2015; Thomas 2015). New species may 
compensate to some extent for taxonomic and functional diver-
sity but are unlikely to replenish the loss of global phylogenetic 
diversity for an extended period (Faurby et al. 2022). On million-
year time scales, heightened speciation rates are hypothesised as 
ecosystems recover in the aftermath of extinction events (Chen 
and Benton 2012), as empty niche space is refilled. How such a 
mechanism could operate under the rapid anthropogenic drivers 
of change is unknown, especially as niche space and resources 
have been disproportionately channelled from many species 
into one, that is, Homo sapiens . In sum, conservation of at-risk 
species and the resilience of remaining species will likely reduce 
species-level extinction rates, but extinction will undoubtedly 
continue under ongoing climatic changes, ongoing species in-
troductions, and as-yet unimagined future human pressures.

3   |   Biases and Uncertainty

The structure of the available fossil record (Holland 2017), and 
the subsequent sampling of fossil material from it, fundamen-
tally impacts what we can ascertain about past extinctions 
(Signor and Lipps  1982). Accurately comparing ecosystems 
through time is a substantial challenge that requires compre-
hensive consideration of fossil record biases, that is, biological, 
environmental, and research biases which systematically and 
non-randomly skew the available fossil record (Alroy  2010; 
Nanglu and Cullen  2023; Raup  1972). Understanding and ad-
dressing these biases is therefore essential for us to accurately 
quantify past extinction rates, and make clearer comparisons 
with those of the present and future.

3.1   |   Temporal Inconsistency

At a fundamental level, the deposition of fossil-bearing rocks is 
driven by a variety of geological and environmental factors that 
are non-continuous and non-evenly distributed across space and 
time (Holland et  al.  2022; Smith and McGowan  2007). Rocks 
that are preserved are prone to destruction in non-uniform ways 
(e.g., subduction), producing a geological record that is incom-
plete, temporally and spatially coarse, and uneven (Benson 
et al. 2021; Vilhena and Smith 2013; Wagner and Marcot 2013). 
Subsequent sampling processes of fossiliferous material from 
this record further exacerbate information distortion, with 

geographic and societal (Raja et al. 2022) factors substantially 
impacting our perception of past events.

All of these factors have particularly noticeable effects on the 
estimation of the rates and durations of ‘events’ (Kemp and 
Sexton 2014). A lack of available data can result in ‘contentious’ 
extinction events, either through an inability to distinguish be-
tween poor sampling within an interval or a loss of species (e.g., 
Ediacaran extinctions, Hoyal Cuthill 2022; Jurassic-Cretaceous 
boundary, Tennant et  al.  2017). In addition, the synthesis re-
quired to detect large-scale events is hampered by the differ-
ences in temporal sampling between different studies, which 
have a substantial impact on measuring diversity through time 
(Dean et  al.  2020; Gibert and Escarguel  2017; Guillerme and 
Cooper 2018; Smith et al. 2023).

The timing of extinction is highly dependent on the definition of 
the taxonomic entity being described: this means that inferred 
extinction rates can be affected by differences in species defini-
tions between clades and between living and fossil taxa. In its 
most extreme form, modern phylogenetic methods have resulted 
in the ability to split species based predominantly on their ge-
netic diversity, an option not open for fossil remains. As already 
discussed, the majority of paleobiological studies are focused at 
the genus level (Hendricks et  al.  2014), in contrast to present-
day biodiversity, which is typically discussed in terms of species. 
Our varying ability to resolve different taxonomic groups to spe-
cies level also has a temporal effect in and of itself, as the relative 
frequency of these groups has not been consistent over time—
this, combined with heterogenous preservational biases, means 
that the diversity of certain taxonomic groups is more difficult 
to estimate than others, providing a challenge to global biodiver-
sity estimates as clades wax and wane. There are also clear tem-
poral patterns in terms of which groups are studied, and these 
issues are not restricted to paleontological analyses; most stud-
ies of current biodiversity are also taxonomically limited (Cowie 
et al. 2025; Mammola et al. 2023; Wiens and Saban 2025). One 
such challenging issue for comparison is our lack of knowledge 
on modern marine extinctions (Harnik et al. 2012; del Monte-
Luna et  al.  2023), whereas enumeration of many extinction 
events in deep time relies on changes in marine genera due to 
their relatively high preservation potential (Plotnick et al. 2016).

3.2   |   Spatial Inconsistency

Spatial heterogeneity in fossil data can generate uncertainties 
that are as large as those associated with temporal gaps in the 
geological record (Allison and Briggs  1993; Antell et  al.  2024; 
Close et al. 2020; Vilhena and Smith 2013). The number, spread, 
and size of geographic regions and environments that are repre-
sented in the fossil record vary substantially and non-uniformly 
through time, and the subsequent sampling of these localities is 
impacted by historical legacies (Raja et al. 2022). This changing 
patchwork of spatial data has a substantial impact on our un-
derstanding and interpretation of extinction events. Given that 
the geographic distributions of species and ecosystems have re-
sponded to changing environmental conditions throughout time, 
there is a risk of conflating ecological and evolutionary adjust-
ments to the new conditions with global extinction. For exam-
ple, did a species become extinct between two successive time 
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periods, or is its preferred environment no longer represented in 
the fossil record (Smith et  al.  2001)? Conversely, an integrated 
fossil record at the global scale may underestimate the magnitude 
of regional changes (Flannery-Sutherland et al. 2022). Particular 
latitudes also show correlated increases in outcrop area, diver-
sity, and collector effort during different time intervals, impact-
ing our ability to understand macroecological patterns such as 
the latitudinal diversity gradient (Allen et al. 2020; Allison and 
Briggs 1993; Jones et al. 2021; Vilhena and Smith 2013).

4   |   Meaningful Comparisons

To compare extinction events requires consideration of the avail-
able data quality, magnitude, duration, and selectivity of each 
extinction event. To make future predictions, we must also con-
sider common drivers: which influences are known to be able 
to cause major shifts in the biosphere? It is difficult to both un-
derstand past extinction events and, perhaps more importantly, 
to make fair and meaningful comparisons between extinction 
events (e.g., Tomašových et al. 2023). Although methodological 
approaches exist to combat at least some of these biases (e.g., 
PyRate, subsampling, spatial partitioning (Close et  al.  2018; 
Silvestro et  al.  2014; Tibshirani  1994; Allen et  al.  2025)), the 
drawing of well-supported comparisons between different time 
periods is always likely to remain heavily caveated. Because it is 
clear that our knowledge is incomplete, we therefore need to be 
circumspect and make the most of the multiple lines of evidence 
that are available.

4.1   |   Extinction Drivers

The extent to which the drivers of extinction in deep time are 
comparable to human-induced environmental changes in the 
present is debated (e.g., Otto  (2018)). For example, although 
greenhouse gas emissions play a key role in both present and 
past climatic changes, how comparable are the volume and 
rate (Foster et  al.  2018)? Although the sources of atmospheric 
changes differ (e.g., fossil fuels versus volcanic activity), it is 
clear that warming has been a key extinction driver in most 
major past events, with accompanying acidification and anoxia 
in the oceans (Bond and Grasby 2017; Calosi et al. 2019; Harnik 
et  al.  2012). This underlines the importance of emissions to 
the unfolding extinction event. Other similarities can also be 
observed: for example, large community restructuring has oc-
curred in past biotic interchanges (i.e., during the exchange of 
species when barriers between separated landmasses or oceans 
are removed), which parallels anthropogenic species introduc-
tions; however, the rate and volume are likely far greater at pres-
ent (McGhee et  al.  2013; Vermeij  1991). Other anthropogenic 
drivers are more difficult to match with past extinction events. 
The degree of novel predation generated by humans may have 
some parallels in past biotic interchange, but the rate and ex-
tent are likely uniquely high. The rapid and extensive changes 
in land and sea use (human versus Earth system mediated) are 
probably only surpassed by cataclysms such as the K-Pg event, 
with other events experiencing these on far slower timescales. 
However, many of the key measures and consequences of ex-
tinction events have similarities between the present day and 
those seen in the geological record.

4.2   |   Extinction Magnitudes

The magnitude of an extinction event is often calculated as the 
proportional reduction in the number of taxa (e.g., genera or 
species) or the proportion of taxa surviving into the time bin or 
period after an event (Table 1, Figure 2). Mammals provide our 
highest-resolution information on anthropogenic extinctions. 
The PHYLACINE database (Faurby et  al.  2020) records 1400 
known mammal genera over the last ~130 ka. Only 1245 of these 
are estimated to still be extant in the wild, giving an approximate 
loss of 11% of mammal genera globally. This is less than the 62% 
genus loss estimated for western European endemic artiodac-
tyls across the Eocene–Oligocene transition (Weppe et al. 2023), 
but the latter is only a subset of the late Eocene mammal fauna, 
whereas the 11% loss of Recent mammal genera is a global esti-
mate. The latter is also less than the 36% loss of Pliocene marine 
megafaunal genera (Pimiento et  al.  2017). However, when we 
only consider megafauna (genera > 45 kg; Malhi et al. 2016) in 
our estimate of Recent mammalian losses (43%), this exceeds 
that of the Pliocene. The original value of 11% would also exceed 
the 8% estimate of genus extinctions outside of peak Cenozoic 
intervals and not be far short of the 16% late Eocene genus ex-
tinction reported by Bambach (2006). However, data compara-
bility is again an issue: Bambach's (2006) estimates are across a 
wide range of marine taxa and not just a single group, and they 
do not account for sampling heterogeneity. Raw proportions of 
genus extinction based on all taxa and across just mammals and 
reptiles in the Paleobiology Database (https://​paleo​biodb.​org/​ 
[accessed 23rd April 2025]) also indicate very high losses at the 
end of the Eocene, a pattern that holds across multiple measures 
(Figure  2). These are, however, based on 5 million-year time 
bins, with this coarse resolution allowing more extinction accu-
mulation as the time period is longer. Such comparisons show 
some of the issues already highlighted around the challenges of 
comparison between past and present data.

4.3   |   Extinction Rates

We would expect the 130 kyr time scale used here for anthro-
pogenic extinctions to be short compared to some other docu-
mented extinction events. However, the duration and dynamics 
of past extinctions are mostly unresolved, with some authors 
estimating a similar 100 kyr scale duration for the PETM 
(Molina 2015; Speijer et al. 2012). The K-Pg is thought to have 
had a more rapid extinction rate, with most extinctions happen-
ing over a very short duration due to the impact winter caused by 
the bolide (Chiarenza et al. 2020; Marshall 2023). Late Triassic 
extinction rates may also have been underestimated 100-fold 
if its duration was 50,000 years rather than 7 million years 
(Marshall 2023). Since “short-sharp” events of 100,000 or fewer 
years tend to become temporally averaged into “longer-gradual” 
geological events in the fossil record, it is extremely difficult to 
draw firm conclusions about the tempo of most past mass ex-
tinction events. Rate-duration deductions therefore inevitably 
come with high levels of uncertainty. This is especially true for 
many of the estimates used to examine the “Sixth mass extinc-
tion,” with most authors focusing on just the wave of extinc-
tions that have taken place over the last 500 years (e.g., Ceballos 
et  al.  2015), a drastically different temporal resolution to the 
baseline data used as a comparator (Wiens and Saban  2025). 
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Rate analyses indicate that the K-Pg event and the start and end 
of the Eocene saw the highest extinction rates (Figure  2), but 
their duration is uncertain and therefore currently not compa-
rable to the modern record. Such drastic differences in temporal 
resolution make solely quantitative comparisons highly unreli-
able, unless enforced with other contextual information such as 
drivers and mechanisms.

4.4   |   Extinction Selectivity

Another key aspect traditionally used to compare events is ex-
tinction selectivity. Range size is considered a key attribute, with 
some evidence that geographically restricted species are usually 
at higher risk. This, however, does not appear to hold consis-
tently across all mass extinctions (Dunhill and Wills 2015; Foster 
et al. 2023; Payne et al. 2023). The current event shows a preferen-
tial loss of small-ranged species, with the loss of island endemics 
being a prominent example (e.g., Cooke et al. (2023)), but extinc-
tions from small oceanic islands and of small-ranged species in 

general are typically not detected in the deep-time fossil record 
(Plotnick et al. 2016). However, earlier waves of anthropogenic 
extinction, such as the loss of the terrestrial megafauna, resulted 
in the loss of once widespread species, and population trends 
over the last few decades cannot be explained by geographic 
range size (Daskalova et al. 2020; Malhi et al. 2016). Range con-
tractions and population reductions in widespread species can 
result in more species being rare. This may leave them more 
vulnerable to extinction in the future, but in turn, would also 
likely result in fewer species being preserved, which would be 
perceived as a mass extinction by future paleobiologists working 
only with the fossil record (Hull et  al.  2015). Body size selec-
tivity is often identified with anthropogenic extinctions (Purvis 
et  al.  2000), again exemplified by the terrestrial megafaunal 
extinctions. However, this link between body size and extinc-
tion is not seen in all events (Monarrez et al. 2021; but see K-Pg; 
Payne et al. 2023). Assessing these factors mechanistically, both 
body size and range size are related to demography, with large 
species and those with restricted ranges usually having smaller 
populations and, in the case of large species, lower reproductive 

TABLE 1    |    Summary of magnitudes estimated for Cenozoic extinction events. These are based on different taxonomic and spatial data, and thus 
they are not necessarily all directly comparable.

Extinction event Taxon
Geographic 

scope Extinction magnitude References

PETM Deep sea benthic 
foraminifera

Local 33%–65% (species) Speijer et al. (2012)

Eocene- Oligocene Marine animals Global 15.6% (genera) Bambach (2006)

Planktonic foraminifera Regional < 15% (species) Keller (1986)

Endemic artiodactyls Local 77% (species)
62% (genera)

Weppe et al. (2023)

Plio-Pleistocene Marine animals Global Ranging by taxonomic group 
0.5% to > 11% (genera)

Bambach (2006)

Marine megafauna Global 36% (genera) Pimiento et al. (2017)

Molluscs Regional 49% (species) Pimiento et al. (2020)

Corals Regional 42% (genera) van Woesik 
et al. (2012)

Anthropogenic Mammals (since 
last interglacial)

Global 11% (genera) Derived from Faurby 
et al. (2020)

Mammalian megafauna 
(since last interglacial)

Global 43% (genera) Derived from Faurby 
et al. (2020)

Mammalian megafauna 
(Late Quaternary)

Regional 21% (Africa) to 88% 
(Australia) (genera)

Continental median = 72%

Koch and 
Barnosky (2006)

Birds (since last 
interglacial)

Global 12% (species) Cooke et al. (2023)

Pacific Island landbirds 
(Holocene)

Local 0 to 100% (species) Island 
median = 66.5%

Braje and 
Erlandson (2013)

Pacific Island land snails 
(since human occupation)

Regional Approximately 50% (species) Lydeard et al. (2004)

Tetrapods (since 1500) Global 1% (genera) Ceballos and 
Ehrlich (2023)
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rates. Smaller populations and reduced ability to rapidly replen-
ish them make species susceptible to overharvesting, which is 
perhaps a unique driver to the current extinction event.

The spatial extent and intensity of human influence means 
that extinctions are unlikely to be confined to a particular tax-
onomic group or geographic location, and that current patterns 
of selectivity may not hold as the event increases in magni-
tude. For example, amphibian extinctions due to infection by 
chytrid fungus are not specifically associated with body size. 
A high-magnitude, high-selectivity event would require very 
high extinction proportions in some taxonomic or functional 
groups, combined with extremely low values for others (Bush 
et al. 2020). As the magnitude increases, the chances of losing 
higher taxonomic groups increases under a random process 
(“Field of bullets” (Raup  1991)), but for this to be achieved at 
lower magnitudes, the process would have to differ strongly 
from random (i.e., some form of selectivity). However, as yet, 
no clear patterns in the degree or type of selectivity have been 
found in common across mass extinctions (Bush et  al.  2020; 
Foster et al. 2023; Payne et al. 2023).

4.5   |   Biosphere Regime Shift

When considering anthropogenic extinctions, the loss of the 
megafauna and the processes they regulated can be seen as part 
of a simplification and homogenization of the biosphere (Fraser 
et al. 2022). In addition to this early wave, simplified and often 
homogenized ecosystems across the globe are widely docu-
mented today (Daru et al. 2021). Current homogenization is at-
tributed to increasingly widespread generalist taxa (McKinney 
and Lockwood  1999), as well as species able to prosper on a 
highly human-dominated globe (Carroll et al. 2023). In addition, 
many species have become globally widespread due to direct 
human transportation across the world. This bears strong sim-
ilarities to the “disaster faunas” of the past (Button et al. 2017), 
with generalist species thriving in the wake of extinction events. 
Perhaps the most famous example is Lystrosaurus, a bulky her-
bivore that became dominant following the end-Permian mass 
extinction (Sahney and Benton 2008). Other changes in species 
community complexity and structure could result from cascad-
ing effects through food webs and other forms of species interac-
tion (e.g., mutualisms and competition), which are of mounting 
concern for current conservation efforts. Looking at past extinc-
tions, trophic cascades have been discussed as a potential mech-
anism exacerbating the K-Pg event (Alvarez et al. 1980), but it 
has proven difficult to quantify (Roopnarine 2006).

Community and ecosystem restructuring is also studied by 
the analysis of changes in functional space, altering the range 
of ecological roles filled. Loss of functional space and particu-
lar functional groups is widely seen in the current extinction 
event and in predictions of future extinction risk (Carmona 
et al. 2021; Hatfield et al. 2022; Sayol et al. 2021). Although evi-
dence is mixed on whether past extinctions removed entire func-
tional groups (Dineen et  al.  2014; Edie et  al.  2018; Foster and 
Twitchett  2014), they did reduce functional redundancy, with 
fewer species performing any particular function (Pimiento 
et  al.  2017, 2020). In the cases of the end-Permian and end-
Cretaceous mass extinctions, regime shifts are thought to have 

taken place, with pre-extinction and post-extinction faunas 
and floras having different structures, for example, the restruc-
turing of tropical forests post K-Pg (Carvalho et al. 2021; Feng 
et al. 2020). Human activities have disrupted long-standing ver-
tebrate size structure patterns (Cooke et al. 2022) and created a 
mammalian biomass overwhelmingly composed of humans and 
domesticates (Greenspoon et al. 2023). This represents a large-
scale restructuring of the biosphere, with such levels of reorgan-
isation perhaps not seen since the recovery from the K-Pg.

5   |   Conclusions

The available evidence suggests that the current extinction 
rate is approaching or even surpassing that seen across earlier 
Cenozoic events, at least for certain groups. Both the taxonomic 
and geographic breadth also appear to be greater than other 
Cenozoic events, and it is clear that human influence has grown 
rapidly and become global. The magnitude recorded so far, how-
ever, suggests that anthropogenic extinctions are still far below 
that of the larger pre-Cenozoic mass extinction events, such as 
those that marked the end-Permian and end-Cretaceous. The 
Eocene–Oligocene transition, 34 million years ago, appears 
to be the nearest contender for the largest Cenozoic extinction 
event, but comparison to the current anthropogenic extinction 
event is heavily hampered by the lack of high resolution data. 
Nevertheless, the available evidence suggests that the Eocene–
Oligocene event occurred on a million-year timescale and was 
staggered spatiotemporally and taxonomically.

Comparisons of extinction events across deep time will always 
remain deeply caveated and uncertain though, even with rap-
idly improving methods and accumulating data. However, the 
future of anthropogenic pressures is also highly uncertain and 
they are not expected to subside for at least many decades, and 
some, such as climatic change, are expected to increase. The 
current extinction event is still unfolding, and whether the se-
verity reaches that seen in the past will depend heavily on the 
fate of species now rare or otherwise considered at risk. As we 
move forward, the amount of anthropogenic sea/land-use and 
climatic change will have a substantial impact on the magnitude 
of the current extinction event. Precluding major reductions in 
the current extinction rate, we are witnessing what will become 
the greatest extinction event since the demise of the non-avialan 
dinosaurs 66 million years ago; whether we see a mass extinc-
tion remains a choice yet to be made.
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